
For each of the following reactions identify the acid and the base. Also indicate which acid—base definition (Lewis, Brønsted-Lowry) applies. In some cases, more than one definition may apply.
a.
b.
c.
d.
e.
f.
(a)

Interpretation: The acid and base need to be identified in the following reaction. Also, the applied acid-base definition needs to be indicated.
Concept Introduction: According to Lewis concept, an acid is an electron pair acceptor. It acts as an electrophile and has vacant orbitals. On the other hand, a base is an electron-pair donor. It acts as a nucleophile and has lone pair of electrons.
According to Bronsted-Lowry acid-base theory, an acid can donate a proton
Answer to Problem 6.1P
Explanation of Solution
The given acid-base reaction is as follows:
In the above reaction, Al in
Here,
(b)

Interpretation: The acid and base need to be identified in the following reaction. Also, the applied acid-base definition needs to be indicated.
Concept Introduction: According to Lewis concept, an acid is an electron pair acceptor. It acts as an electrophile and has vacant orbitals. On the other hand, a base is an electron-pair donor. It acts as a nucleophile and has lone pair of electrons.
According to Bronsted-Lowry acid-base theory, an acid can donate a proton
Answer to Problem 6.1P
Explanation of Solution
The given acid-base reaction is as follows:
Here,
In the above reaction,
Therefore,
(c)

Interpretation: The acid and base need to be identified in the following reaction. Also, the applied acid-base definition needs to be indicated.
Concept Introduction: According to Lewis concept, an acid is an electron pair acceptor. It acts as an electrophile and has vacant orbitals. On the other hand, a base is an electron-pair donor. It acts as a nucleophile and has lone pair of electrons.
According to Bronsted-Lowry acid-base theory, an acid can donate a proton
Answer to Problem 6.1P
Explanation of Solution
The given acid-base reaction is as follows:
In the above reaction, Ni has vacant orbitals, thus it can accept electron pairs (act as ab electrophile). Due to the lone pair of electrons on the N atom in
Here,
This can be represented as follows:
(d)

Interpretation: The acid and base need to be identified in the following reaction. Also, the applied acid-base definition needs to be indicated.
Concept Introduction:
According to Lewis concept, an acid is an electron pair acceptor. It acts as an electrophile and has vacant orbitals. On the other hand, a base is an electron-pair donor. It acts as a nucleophile and has lone pair of electrons.
According to Bronsted-Lowry acid-base theory, an acid can donate a proton
Answer to Problem 6.1P
Explanation of Solution
The given acid-base reaction is as follows:
In the above reaction, due to the lone pair of electrons on the N atom in
Here,
This can be represented as follows:
(e)

Interpretation: The acid and base need to be identified in the following reaction. Also, the applied acid-base definition needs to be indicated.
Concept Introduction: According to Lewis concept, an acid is an electron pair acceptor. It acts as an electrophile and has vacant orbitals. On the other hand, a base is an electron-pair donor. It acts as a nucleophile and has lone pair of electrons.
According to Bronsted-Lowry acid-base theory, an acid can donate a proton
Answer to Problem 6.1P
Explanation of Solution
The given acid-base reaction is as follows:
The above reaction is a redox reaction. Here, the oxidation state of S in
The oxidation state of S changes from +4 to +6 as S donates an electron pair. Similarly, the oxidation state of Cl changes from +5 to +4 because it accepts an electron pair (there are 2
Therefore,
This can be represented as follows:
(f)

Interpretation: The acid and base needto be identified in the following reaction. Also, the applied acid-base definition needs to be indicated.
Concept Introduction: According to Lewis concept, an acid is an electron pair acceptor. It acts as an electrophile and has vacant orbitals. On the other hand, a base is an electron-pair donor. It acts as a nucleophile and has lone pair of electrons.
According to Bronsted-Lowry acid-base theory, an acid can donate a proton
Answer to Problem 6.1P
Explanation of Solution
The given acid-base reaction is as follows:
In the above reaction,
Here,
Therefore, HF act as both Bronsted-Lowry and Lewis acid and
Want to see more full solutions like this?
Chapter 6 Solutions
Inorganic Chemistry
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Cosmic Perspective Fundamentals
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Human Anatomy & Physiology (2nd Edition)
Microbiology: An Introduction
- Predict the major products of the following organic reaction: + Some important notes: A ? • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure.arrow_forwardif the answer is no reaction than state that and please hand draw!arrow_forward"I have written solutions in text form, but I need experts to rewrite them in handwriting from A to Z, exactly as I have written, without any changes."arrow_forward
- Deducing the reactants of a Diels-Alder reaction vn the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ O If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. • If your answer is no, check the box under the drawing area instead. Click and drag to start drawing a structure. Product can't be made in one step. Explanation Checkarrow_forwardPredict the major products of the following organic reaction: Δ ? Some important notes: • Draw the major product, or products, of the reaction in the drawing area below. • If there aren't any products, because no reaction will take place, check the box below the drawing area instead. • Be sure to use wedge and dash bonds when necessary, for example to distinguish between major products that are enantiomers. Explanation Check Click and drag to start drawing a structure. Larrow_forward> Can the molecule on the right-hand side of this organic reaction be made in good yield from no more than two reactants, in one step, by moderately heating the reactants? ? Δ • If your answer is yes, then draw the reactant or reactants in the drawing area below. You can draw the reactants in any arrangement you like. If your answer is no, check the box under the drawing area instead. Explanation Check Click and drag to start drawing a structure. Х © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accesarrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
