
For each of the following reactions identify the acid and the base. Also indicate which acid—base definition (Lewis, Brønsted-Lowry) applies. In some cases, more than one definition may apply.
a.
b.
c.
d.
e.
f.
(a)

Interpretation: The acid and base need to be identified in the following reaction. Also, the applied acid-base definition needs to be indicated.
Concept Introduction: According to Lewis concept, an acid is an electron pair acceptor. It acts as an electrophile and has vacant orbitals. On the other hand, a base is an electron-pair donor. It acts as a nucleophile and has lone pair of electrons.
According to Bronsted-Lowry acid-base theory, an acid can donate a proton
Answer to Problem 6.1P
Explanation of Solution
The given acid-base reaction is as follows:
In the above reaction, Al in
Here,
(b)

Interpretation: The acid and base need to be identified in the following reaction. Also, the applied acid-base definition needs to be indicated.
Concept Introduction: According to Lewis concept, an acid is an electron pair acceptor. It acts as an electrophile and has vacant orbitals. On the other hand, a base is an electron-pair donor. It acts as a nucleophile and has lone pair of electrons.
According to Bronsted-Lowry acid-base theory, an acid can donate a proton
Answer to Problem 6.1P
Explanation of Solution
The given acid-base reaction is as follows:
Here,
In the above reaction,
Therefore,
(c)

Interpretation: The acid and base need to be identified in the following reaction. Also, the applied acid-base definition needs to be indicated.
Concept Introduction: According to Lewis concept, an acid is an electron pair acceptor. It acts as an electrophile and has vacant orbitals. On the other hand, a base is an electron-pair donor. It acts as a nucleophile and has lone pair of electrons.
According to Bronsted-Lowry acid-base theory, an acid can donate a proton
Answer to Problem 6.1P
Explanation of Solution
The given acid-base reaction is as follows:
In the above reaction, Ni has vacant orbitals, thus it can accept electron pairs (act as ab electrophile). Due to the lone pair of electrons on the N atom in
Here,
This can be represented as follows:
(d)

Interpretation: The acid and base need to be identified in the following reaction. Also, the applied acid-base definition needs to be indicated.
Concept Introduction:
According to Lewis concept, an acid is an electron pair acceptor. It acts as an electrophile and has vacant orbitals. On the other hand, a base is an electron-pair donor. It acts as a nucleophile and has lone pair of electrons.
According to Bronsted-Lowry acid-base theory, an acid can donate a proton
Answer to Problem 6.1P
Explanation of Solution
The given acid-base reaction is as follows:
In the above reaction, due to the lone pair of electrons on the N atom in
Here,
This can be represented as follows:
(e)

Interpretation: The acid and base need to be identified in the following reaction. Also, the applied acid-base definition needs to be indicated.
Concept Introduction: According to Lewis concept, an acid is an electron pair acceptor. It acts as an electrophile and has vacant orbitals. On the other hand, a base is an electron-pair donor. It acts as a nucleophile and has lone pair of electrons.
According to Bronsted-Lowry acid-base theory, an acid can donate a proton
Answer to Problem 6.1P
Explanation of Solution
The given acid-base reaction is as follows:
The above reaction is a redox reaction. Here, the oxidation state of S in
The oxidation state of S changes from +4 to +6 as S donates an electron pair. Similarly, the oxidation state of Cl changes from +5 to +4 because it accepts an electron pair (there are 2
Therefore,
This can be represented as follows:
(f)

Interpretation: The acid and base needto be identified in the following reaction. Also, the applied acid-base definition needs to be indicated.
Concept Introduction: According to Lewis concept, an acid is an electron pair acceptor. It acts as an electrophile and has vacant orbitals. On the other hand, a base is an electron-pair donor. It acts as a nucleophile and has lone pair of electrons.
According to Bronsted-Lowry acid-base theory, an acid can donate a proton
Answer to Problem 6.1P
Explanation of Solution
The given acid-base reaction is as follows:
In the above reaction,
Here,
Therefore, HF act as both Bronsted-Lowry and Lewis acid and
Want to see more full solutions like this?
Chapter 6 Solutions
Inorganic Chemistry
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Cosmic Perspective Fundamentals
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Human Anatomy & Physiology (2nd Edition)
Microbiology: An Introduction
- Draw the Fischer projection from the skeletal structure shown below. HO OH OH OH OH H Q Drawing Atoms, Bonds and Rings Charges I ☐ T HO H H OH HO I CH2OH H OH Drag H OH -CH2OH CHO -COOH Undo Reset Remove Donearrow_forwardplease provide the structure for this problem, thank youarrow_forwardpresented by Morallen Lig Intermine the hand product for the given mution by adding atoms, bonds, nonhonding diarion panda скуль Step 3: Comp the draw the product Step 2: Agama workup Compithe 429 ملولةarrow_forward
- Reaction A 0,0arrow_forwardpresented by Morillon Leaning Predict the organic product for the min кусур HSC Adithane carved arnown to come than that to the condon slchroruis in acid in in aquishri with ноюarrow_forward6.15PM Sun Mar 30 K Draw the major product of this reaction. Include any relevant stereochemistry. Ignore inorganic byproducts. Problem 1 of O H [PhзPCH2CH3]*C|¯ NaH Drawing > Q Atoms, Bonds and Draw or tap a nearrow_forward
- 8:17 PM Sun Mar 30 Draw the major product of this reaction. Ignore inorganic byproducts. HSCH2CH2CH2SH, BF3 Probler Drawing Ato Bonds Clarrow_forwardpresented by Mr L How the coprion. (Il Done in no wraction, dew the starting redential) доarrow_forward8:16 PM Sun Mar 30 K Draw the major product of this reaction. Ignore inorganic byproducts. Proble 1. CH3MgBr 2. H3O+ F Drawingarrow_forward
- о но оarrow_forwardName the major organic product of the following action of 4-chloro-4-methyl-1-pentanol in neutral pollution 10+ Now the product. The product has a molecular formula f b. In a singly hain, the starting, material again converts into a secule with the molecular kormula CIO. but with comply Draw the major organic structure inhalationarrow_forwardMacmillan Learning Alcohols can be oxidized by chromic acid derivatives. One such reagent is pyridinium chlorochromate, (C,H,NH*)(CICTO3), commonly known as PCC. Draw the proposed (neutral) intermediate and the organic product in the oxidation of 1-butanol by PCC when carried out in an anhydrous solvent such as CH₂C₁₂. PCC Intermediate OH CH2Cl2 Draw the intermediate. Select Draw Templates More с H Cr о Product Draw the product. Erase Select Draw Templates More H о Erasearrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning





