Concept explainers
(a)
State whether the statement "seepage velocity is always greater than the discharge velocity" is true or false.
(a)
Answer to Problem 6.1P
The given statement is
Explanation of Solution
Express the derived equation to relay seepage velocity
Here, q is the flow rate, v is the discharge velocity, A is the gross cross sectional area,
Seepage velocity is based upon the void space of the soil and simultaneously the discharge velocity is based upon the gross sectional area of the soil. Therefore, this directly means that the seepage velocity is greater than the discharge velocity.
Thus, the given statement is
(b)
State whether the statement "hydraulic conductivity of a sandy soil is greater than that of a clayey soil" is true or false.
(b)
Answer to Problem 6.1P
The given statement is
Explanation of Solution
The hydraulic conductivity (k) for clayey soils varies for different types and the k value for Silty clay is
The hydraulic conductivity (k) for sandy soils varies from
Based on the above values, hydraulic conductivity (k) for sandy soil is greater than the clayey soil.
Thus, the given statement is
(c)
State whether the statement “hydraulic conductivity is same for water and oil in a porous medium” is true or false.
(c)
Answer to Problem 6.1P
The given statement is
Explanation of Solution
For each time, the hydraulic conductivity contains the unit of length and this represent that there is a fluid flow which is a property of porous medium. However, the viscous fluid like oil moves slowly through sand when compared to water. From the above comparison, it means that the flow of water and oil differs in the hydraulic conductivity of the porous medium.
Hence, the given statement is
(d)
State whether the statement “pressure head is proportional to the pore water pressure” is true or false.
(d)
Answer to Problem 6.1P
The given statement is
Explanation of Solution
Write the pressure head equation
Here, u is the pore water pressure,
The above equation shows that the pressure head
Hence, the given statement is
(d)
State whether the statement “magnitude of pressure head depends on the selected datum” is true or false.
(d)
Answer to Problem 6.1P
The given statement is
Explanation of Solution
Write the pressure head equation
From the above equation, it is clear that the pressure head magnitude depends upon the datum plane. However, the pressure head magnitude does not depend upon the selected datum.
Hence, the given statement is
Want to see more full solutions like this?
Chapter 6 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
- 14. Find the reaction R and the moment at the wall for the propped beam shown below using Point Load Analogous via Integration: 16 kN/m 000 4.5m 4.5marrow_forward13. Determine the moment at supports A and B of the fixed ended beam loaded as shown using Point Load Analogous via Integration: 10 kN/m 9 kN/m 3 m 3 m 12 kN/marrow_forwardHow does construction estimate inaccuracies lead to delays and complications that impact projects?arrow_forward
- Q5: Given the following system: น -3 y= [4 -2] +3u Generate a model with states that are the sum and difference of the original states.arrow_forward4. Draw a stress-strain curve (in tension and compression) for a reinforced concrete beam below. Label the important parts of the plot. Find the linear elastic approximation obtained using the transformed technique, and plot over the same strain ranges. 24" 4" 20" 16" f = 8,000 psi 8- #11 bars Grade 60 steel 4" (f, = 60 ksi and E₁ = 29000 ksi)arrow_forwardWhy is Historical Data important compared to other sourses of information when estimating construction projects?arrow_forward
- Need help, please show all work, steps, units and round to 3 significant figures. Thank you!!arrow_forwardNeed help. Find the answer to the boxes marked in red. Thanks!arrow_forwardFor the gravity dam shown in the figure, The following data are available: -Unit weight of concrete (Yconc) = 2.4 ton/m³ -Vertical upward earth quake factor (K,) = 0.1 -Neglect Wave pressure, silt pressure and ice force μ=0.65 a-Find heel and toe stresses (Pmin & Pmax) b-Is this structure safe against tension? c-Find the factor of safety against sliding and overturning (F.S, & F.Sover) 165 m 160 m t 10 m T I 4 m 50 100 marrow_forward
- For the gravity dam shown in the figure, The following data are available: -Unit weight of concrete (Yeone) 2.4 ton/m³ Vertical down ward earth quake factor (K,) = 0.1 Neglect Wave pressure, silt pressure and ice force The wind velocity (V)-45 Km/hr Straight length of water expanse (F) 75 Km =0.7 14-70m 3h T a- Find the factor of safety against sliding and overturning (F.Slid F.Sover) b- Find the toe and heel stresses (hma, and hmin.) c-Check tension. 8marrow_forwardQUESTION 2-(40 Points) In the case where other information is given in the figure, the wall is under the effect of a uniform lateral wind load of 0.7 kN/m2. Since the foundation is sized according to the safe bearing capacity of the soil and the safe bearing capacity remains the same, find the width of this foundation asymmetrically (with uniform base pressure). Draw the vertical section of the wall of the asymmetric foundation and write its dimensions and values on it. Draw the T and M diagrams along the width. The foundation thickness is the same in both cases. q=0.7 kN/m2 5 m R Duvar Nd=Wd 0.7 m T K 0 0.6 0.5 1.7 m Yb-24 kN/m3 0.6 m T + foundationarrow_forwardCan you pls. Explain on how to get "BETA T" and "BETA C" on this study about VALUE OF TRAVEL TIME.arrow_forward
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning