
Concept explainers
(a)
State whether the statement "seepage velocity is always greater than the discharge velocity" is true or false.
(a)

Answer to Problem 6.1P
The given statement is
Explanation of Solution
Express the derived equation to relay seepage velocity
Here, q is the flow rate, v is the discharge velocity, A is the gross cross sectional area,
Seepage velocity is based upon the void space of the soil and simultaneously the discharge velocity is based upon the gross sectional area of the soil. Therefore, this directly means that the seepage velocity is greater than the discharge velocity.
Thus, the given statement is
(b)
State whether the statement "hydraulic conductivity of a sandy soil is greater than that of a clayey soil" is true or false.
(b)

Answer to Problem 6.1P
The given statement is
Explanation of Solution
The hydraulic conductivity (k) for clayey soils varies for different types and the k value for Silty clay is
The hydraulic conductivity (k) for sandy soils varies from
Based on the above values, hydraulic conductivity (k) for sandy soil is greater than the clayey soil.
Thus, the given statement is
(c)
State whether the statement “hydraulic conductivity is same for water and oil in a porous medium” is true or false.
(c)

Answer to Problem 6.1P
The given statement is
Explanation of Solution
For each time, the hydraulic conductivity contains the unit of length and this represent that there is a fluid flow which is a property of porous medium. However, the viscous fluid like oil moves slowly through sand when compared to water. From the above comparison, it means that the flow of water and oil differs in the hydraulic conductivity of the porous medium.
Hence, the given statement is
(d)
State whether the statement “pressure head is proportional to the pore water pressure” is true or false.
(d)

Answer to Problem 6.1P
The given statement is
Explanation of Solution
Write the pressure head equation
Here, u is the pore water pressure,
The above equation shows that the pressure head
Hence, the given statement is
(d)
State whether the statement “magnitude of pressure head depends on the selected datum” is true or false.
(d)

Answer to Problem 6.1P
The given statement is
Explanation of Solution
Write the pressure head equation
From the above equation, it is clear that the pressure head magnitude depends upon the datum plane. However, the pressure head magnitude does not depend upon the selected datum.
Hence, the given statement is
Want to see more full solutions like this?
Chapter 6 Solutions
Fundamentals of Geotechnical Engineering (MindTap Course List)
- Text Book Problem 7.82 (page 261) Consider the total head-loss in the system forthis flow is 18.56 ft (head-losses in first and second pipe are 13.83 ft and 4.73 ftrespectively). Please show numerical values for EGL/HGL at the beginning/end/intermediatechange point. (Point distribution: elevation determination 5 points, EGL, HGL lines 4points).(I think we are just using the values provided for head losses to solve this problem)arrow_forwardCalculate the BMs (bending moments) at all the joints of the beam shown in Fig.1 using the moment distribution method, and draw the Shear force diagram and Bending moment diagram for the beam shown. The beam is subjected to an UDL of w=65m. L=4.5m L1= 1.8m. Assume the support at C is pinned, and A and B are roller supports. E = 200GPa, I = 250x106 mm4.arrow_forwardCalculate the BMs (bending moments) at all the joints of the beam shown in Fig.1 using the Slope deflection method. The beam is subjected to an UDL of w=65m. L=4.5m L1= 1.8m. Assume the support at C is pinned, and A and B are roller supports. E = 200GPa, I = 250x106 mm4.arrow_forward
- Thank you for your help if you would also provide the equations used .arrow_forwardThe sectors are divided as follows:top right = 1, top left = 2, middle = 3, bottom = 4.(a) Determine the distance yˉ to the centroid of the beam’s cross-sectional area.Solve the next questions by building a table. (Table format Answers) (b) Determine the second moment of area (moment of inertia) about the x′ axis. (c) Determine the second moment of area (moment of inertia) about the y-axis.arrow_forwardinstructions: make sure to follow the instructions and provide complete and detailed solution create/draw a beam with uniformly distributed load and concentrated load after, find the shear and moment equation and ensure to draw it's shear and moment diagram once done, write it's conclusion or observation 4:57 PMarrow_forward
- Solve for forces on pin C and Darrow_forwardBorrow pit soil is being used to fill an 900,00 yd3 of depression. The properties of borrowpit and in-place fill soils obtained from laboratory test results are as follows:• Borrow pit soil: bulk density 105 pcf, moisture content = 8%, and specific gravity = 2.65• In-place fill soil: dry unit weight =120 pcf, and moisture content = 16%(a) How many yd3 of borrow soil is required?(b) What water mass is needed to achieve 16% moisture in the fill soil?(c) What is the in-place density after a long rain?arrow_forwardsolve for dt/dx=f(t,x)=x+t^2arrow_forward
- Calculate the BMs (bending moments) at all the joints of the beam shown in Fig.1 using the slope deflection method, draw the resulting shear force diagran and bending moment diagram. The beam is subjected to an UDL of w=65m. L=4.5m, L1= 1.8m. Assume the support at C is pinned, and A and B are roller supports. E = 200 GPa, I = 250x106 mm4.arrow_forwardProblem 2 (A is fixed and C is a pin) Find the reactions and A and C. 10 k- 6 ft 6 ft B A 2 k/ft 15 ftarrow_forward6. A lake with no outlet is fed by a river with a constant flow of 1200 ft3/s. Water evaporates from the surface at a constant rate of 13 ft3/s per square mile of surface area. The surface area varies with the depth h (in feet) as A (square miles) = 4.5 + 5.5h. What is the equilibrium depth of the lake? Below what river discharge (volume flow rate) will the lake dry up?arrow_forward
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage Learning
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning



