FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
Any help will be very appreciated to understand this problem. Thank in advanced
Assuming the ideal gas model for the air and ignoring heat transfer, determine the temperature, in °R, and pressure, in lbf/in.2, at the exit.
Twenty m3/hr of air at 600 kPa, 330 Kenters a well-insulated, horizontal pipe having a diameter of 1.2 cm and exits at 120 kPa.
Assume steady state and use the ideal gas model for the air. Also assume constant specific heat, C, = 1.007 kJ/kg-K for air at 330 K.
Determine the mass flow rate, in kg/s, and the exit velocity, in m/s.
Step 1
Your answer has been saved. See score details after the due date.
Determine the mass flow rate, in kg/s.
m =
0.0348
kg/s
Attempts: 1 of 1 used
Step 2
Determine the exit velocity, in m/s.
V2 =
i
m/s
Save for Later
Attempts: 0 of 1 used
Submit Answer
Knowledge Booster
Similar questions
- pls answer all questions i will give thumbs uparrow_forwardQuestion 17 23 m³/hr of air at 600 kPa, 330 K enters a well-insulated, horizontal pipe having a diameter of 1.2 cm and exits at 120 kPa. Assume steady state and use the ideal gas model for the air. Also assume constant specific heat, c = 1.007 kJ/kg-K for air at 330K. Determine the mass flow rate, in kg/s, and the exit velocity, in m/s. Step 1 Determine the mass flow rate, in kg/s. m₁ = kg/s Step 2 Determine the exit velocity, in m/s. V₂ = > m/sarrow_forwardTwenty m³/hr of air at 600 kPa, 330 K enters a well-insulated, horizontal pipe having a diameter of 1.2 cm and exits at 120 kPa. Assume steady state and use the ideal gas model for the air. Also assume constant specific heat, cp = 1.007 kJ/kg-K for air at 330 K. Determine the mass flow rate, in kg/s, and the exit velocity, in m/s. Step 1 Your Answer Determine the mass flow rate, in kg/s. mi = Step 2 Correct Answer (Used) 0.0352 * Your answer is incorrect. kg/s Determine the exit velocity, in m/s.arrow_forward
- Figure shows data for a portion of the ducting in ventilation system operating at steady state. The ducts are well insulated and the pressure is very nearly 1 bar throughout. Assuming the ideal gas model for air with Cp = 1 kJ/kg · K. and ignoring kinetic and potential energy effects, determine: (a) the temperature of the air at the exit, in °C. (b) the exit diameter, in m. (c) the rate of entropy production within the duct, in kJ/min.arrow_forwardTwenty m3/hr of air at 600 kPa, 330 K enters a well-insulated, horizontal pipe having a diameter of 1.2 cm and exits at 120 kPa. Assume steady state and use the ideal gas model for the air. Also assume constant specific heat, c, = 1.007 kJ/kg-K for air at 330 K. Determine the mass flow rate, in kg/s, and the exit velocity, in m/s. Step 1 Determine the mass flow rate, in kg/s. i kg/s Save for Later Attempts: 0 of 1 used Submit Answer Step 2 The parts of this question must be completed in order. This part will be available when you complete the part above.arrow_forwardTwenty m/hr of air at 600 kPa, 330 Kenters a well-insulated, horizontal pipe having a diameter of 1.2 cm and exits at 120 kPa. Assume steady state and use the ideal gas model for the air. Also assume constant specific heat, Cp = 1.007 kJ/kg-K for air at 330 K. Determine the mass flow rate, in kg/s, and the exit velocity, in m/s.arrow_forward
- 46. Air modeled as an ideal gas enters a well-insulated diffuser operating at steady state at 307 K with a velocity of 80 m/s and exits with a velocity of 25 m/s. For negligible potential energy effects, determine the exit temperature, in K. Use cp = 1.006 kJ/kg-K. a. 301 C. 319 b. 313 d. Answer is not among the choicesarrow_forwardThe first answer is wrong and the new answer is wrong too.arrow_forwardAir enters a diffuser operating at steady state at 540°R, 15 Ilbf/in.?, with a velocity of 600 ft/s, and exits with a velocity of 60 ft/s. The ratio of the exit area to the inlet area is 6. Assuming the ideal gas model for the air and ignoring heat transfer, determine the temperature, in °R, and pressure, in Ibf/in.?, at the exit.arrow_forward
- Air with a mass flow rate of 3 kg/s enters a horizontal nozzle operating at steady state at 400 K, 300 kPa, and velocity of 2.5 m/s. At the exit, the temperature is 250 K and the velocity is 400 m/s. Using the ideal gas model for air with constant cp = 1.011 kJ/kg · K, determine a. the area at the inlet, in m2. b. the heat transfer between the nozzle at its surroundings, in kW. Specify whether the heat transfer is to or from the air.arrow_forwardAir enters a diffuser operating at steady state at 645°R, 15 Ibf/in.?, with a velocity of 600 ft/s, and exits with a velocity of 60 ft/s. The ratio of the exit area to the inlet area is 1o. Assuming the ideal gas model for the air and ignoring heat transfer, determine the temperature, in °R, and pressure, in Ibf/in.?, at the exit.arrow_forwardNitrogen (N₂) enters a well-insulated diffuser operating at steady state at 0.656 bar, 275 K with a velocity of 282 m/s. The inlet area is 4.8 x 10-3 m². At the diffuser exit, the pressure is 0.9 bar and the velocity is 80 m/s. The nitrogen behaves as an ideal gas with k = 1.4. (a) Determine the exit temperature, in K, and the exit area, in m². (b) For a control volume enclosing the diffuser, determine the rate of entropy production, in kW/K.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY