
College Algebra
7th Edition
ISBN: 9781305115545
Author: James Stewart, Lothar Redlin, Saleem Watson
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 5CC
What is the reduced row echelon form of a matrix?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Name:
Mussels & bem
A section of a river currently has a population of 20 zebra mussels. The
population of zebra mussels increases 60 % each month. What will be the
population of zebra mussels after 2 years?
9
10
# of
months
# of
mussels
1
2
3
4
5
6
7
8
o
Graph your data. Remember to title your graph.
What scale should be used on the y-axis?
What scale should be used on the x-axis?
Exponential Growth Equation
y = a(1+r)*
In a national park, the current population of an endangered species of bear is 80. Each year, the
population decreases by 10%. How can you model the population of bears in the park?
# of years
# of bears
9
10
2
3
4
5
6
7
8
°
1
Graph your data. Remember to title your graph.
What scale should be used on the y-axis?
What scale should be used on the x-axis?
SMOKY
19
OUNTAINS
NATIONAL
Exponential Decay Equation
y = a(1-r)*
PARK
On Feb. 8, this year, at 6am in the morning all UiB meteorology professors met to discuss a highly unfortunate
and top-urgent crisis: Their most precious instrument, responsible for measuring the air temperature hour-by-
hour, had failed - what if the Bergen public would find out? How would they plan their weekend without
up-to-date air temperature readings? Silent devastation - and maybe a hint of panic, also - hung in the room.
Apprentice Taylor, who - as always - was late to the meeting, sensed that this was his chance to shine! Could
they fake the data? At least for some hours (until the measurements would work again)? He used to spend a
lot of time online and thus knew the value of fake data, especially when it spread fast!
He reminded the crying professors of a prehistoric project with the title "Love your derivatives as you love
yourself!" - back then, they had installed top-modern technology that not only measured the air temperature
itself, but also its 1st, 2nd, 3rd, 4th, and…
Chapter 6 Solutions
College Algebra
Ch. 6.1 - If a system of linear equations has infinitely...Ch. 6.1 - Write the augmented matrix of the following system...Ch. 6.1 - Prob. 3ECh. 6.1 - Prob. 4ECh. 6.1 - Prob. 5ECh. 6.1 - Prob. 6ECh. 6.1 - Prob. 7ECh. 6.1 - Prob. 8ECh. 6.1 - Dimension of a Matrix State the dimension of the...Ch. 6.1 - Prob. 10E
Ch. 6.1 - Prob. 11ECh. 6.1 - Prob. 12ECh. 6.1 - Prob. 13ECh. 6.1 - Prob. 14ECh. 6.1 - Prob. 15ECh. 6.1 - Prob. 16ECh. 6.1 - Prob. 17ECh. 6.1 - Prob. 18ECh. 6.1 - Prob. 19ECh. 6.1 - Prob. 20ECh. 6.1 - Prob. 21ECh. 6.1 - Prob. 22ECh. 6.1 - Prob. 23ECh. 6.1 - Prob. 24ECh. 6.1 - Prob. 25ECh. 6.1 - Prob. 26ECh. 6.1 - Prob. 27ECh. 6.1 - Prob. 28ECh. 6.1 - Linear System with One Solution The system of...Ch. 6.1 - Linear System with One Solution The system of...Ch. 6.1 - Linear System with One Solution The system of...Ch. 6.1 - Linear System with One Solution The system of...Ch. 6.1 - Linear System with One Solution The system of...Ch. 6.1 - Linear System with One Solution The system of...Ch. 6.1 - Linear System with One Solution The system of...Ch. 6.1 - Linear System with One Solution The system of...Ch. 6.1 - Linear System with One Solution The system of...Ch. 6.1 - Linear System with One Solution The system of...Ch. 6.1 - Dependent or Inconsistent Linear Systems...Ch. 6.1 - Dependent or Inconsistent Linear Systems...Ch. 6.1 - Dependent or Inconsistent Linear Systems...Ch. 6.1 - Dependent or Inconsistent Linear Systems...Ch. 6.1 - Dependent or Inconsistent Linear Systems...Ch. 6.1 - Dependent or Inconsistent Linear Systems...Ch. 6.1 - Dependent or Inconsistent Linear Systems...Ch. 6.1 - Dependent or Inconsistent Linear Systems...Ch. 6.1 - Dependent or Inconsistent Linear Systems...Ch. 6.1 - Dependent or Inconsistent Linear Systems...Ch. 6.1 - Solving a Linear System Solve the system of linear...Ch. 6.1 - Prob. 50ECh. 6.1 - Prob. 51ECh. 6.1 - Prob. 52ECh. 6.1 - Prob. 53ECh. 6.1 - Prob. 54ECh. 6.1 - Prob. 55ECh. 6.1 - Prob. 56ECh. 6.1 - Prob. 57ECh. 6.1 - Prob. 58ECh. 6.1 - Prob. 59ECh. 6.1 - Solving a Linear System Solve the system of linear...Ch. 6.1 - Prob. 61ECh. 6.1 - Solving a Linear System Solve the system of linear...Ch. 6.1 - Solving a Linear System Solve the system of linear...Ch. 6.1 - Solving a Linear System Solve the system of linear...Ch. 6.1 - Solving a Linear System Using a Graphing...Ch. 6.1 - Prob. 66ECh. 6.1 - Prob. 67ECh. 6.1 - Prob. 68ECh. 6.1 - Nutrition A doctor recommends that a patient take...Ch. 6.1 - Prob. 70ECh. 6.1 - Distance, Speed, and Time Amanda, Bryce, and Corey...Ch. 6.1 - Prob. 72ECh. 6.1 - Prob. 73ECh. 6.1 - Traffic Flow A section of a city’s street network...Ch. 6.1 - Prob. 75ECh. 6.2 - We can add (or subtract) two matrices only if they...Ch. 6.2 - Prob. 2ECh. 6.2 - Which of the following operations can we perform...Ch. 6.2 - Prob. 4ECh. 6.2 - Prob. 5ECh. 6.2 - Prob. 6ECh. 6.2 - Prob. 7ECh. 6.2 - Prob. 8ECh. 6.2 - Prob. 9ECh. 6.2 - Prob. 10ECh. 6.2 - Prob. 11ECh. 6.2 - Prob. 12ECh. 6.2 - Prob. 13ECh. 6.2 - Prob. 14ECh. 6.2 - Prob. 15ECh. 6.2 - Prob. 16ECh. 6.2 - Prob. 17ECh. 6.2 - Prob. 18ECh. 6.2 - Prob. 19ECh. 6.2 - Prob. 20ECh. 6.2 - Prob. 21ECh. 6.2 - Prob. 22ECh. 6.2 - Prob. 23ECh. 6.2 - Prob. 24ECh. 6.2 - Prob. 25ECh. 6.2 - Prob. 26ECh. 6.2 - Prob. 27ECh. 6.2 - Prob. 28ECh. 6.2 - Prob. 29ECh. 6.2 - Prob. 30ECh. 6.2 - Prob. 31ECh. 6.2 - Prob. 32ECh. 6.2 - Prob. 33ECh. 6.2 - Prob. 34ECh. 6.2 - Prob. 35ECh. 6.2 - Prob. 36ECh. 6.2 - Prob. 37ECh. 6.2 - Prob. 38ECh. 6.2 - Prob. 39ECh. 6.2 - Prob. 40ECh. 6.2 - Prob. 41ECh. 6.2 - Prob. 42ECh. 6.2 - Prob. 43ECh. 6.2 - Prob. 44ECh. 6.2 - Prob. 45ECh. 6.2 - Prob. 46ECh. 6.2 - Prob. 47ECh. 6.2 - Prob. 48ECh. 6.2 - Prob. 49ECh. 6.2 - Prob. 50ECh. 6.2 - Prob. 51ECh. 6.2 - Prob. 52ECh. 6.2 - Prob. 53ECh. 6.2 - Prob. 54ECh. 6.2 - Prob. 55ECh. 6.2 - Prob. 56ECh. 6.2 - Prob. 57ECh. 6.2 - Prob. 58ECh. 6.2 - Prob. 59ECh. 6.2 - Prob. 60ECh. 6.2 - Prob. 61ECh. 6.2 - Prob. 62ECh. 6.2 - Prob. 63ECh. 6.2 - DISCUSS: Square Roots of Matrices A square root of...Ch. 6.3 - (a) The matrix I=[1001] is called an _____ matrix....Ch. 6.3 - (a) Write the following system as a matrix...Ch. 6.3 - Prob. 3ECh. 6.3 - Prob. 4ECh. 6.3 - Verifying the Inverse of a Matrix Calculate the...Ch. 6.3 - Prob. 6ECh. 6.3 - Prob. 7ECh. 6.3 - Prob. 8ECh. 6.3 - Prob. 9ECh. 6.3 - Prob. 10ECh. 6.3 - Prob. 11ECh. 6.3 - Prob. 12ECh. 6.3 - Prob. 13ECh. 6.3 - Prob. 14ECh. 6.3 - Prob. 15ECh. 6.3 - Prob. 16ECh. 6.3 - Prob. 17ECh. 6.3 - Finding the Inverse of a Matrix Find the inverse...Ch. 6.3 - Prob. 19ECh. 6.3 - Prob. 20ECh. 6.3 - Prob. 21ECh. 6.3 - Prob. 22ECh. 6.3 - Prob. 23ECh. 6.3 - Prob. 24ECh. 6.3 - Finding the Inverse of a Matrix Find the inverse...Ch. 6.3 - Prob. 26ECh. 6.3 - Prob. 27ECh. 6.3 - Prob. 28ECh. 6.3 - Prob. 29ECh. 6.3 - Prob. 30ECh. 6.3 - Prob. 31ECh. 6.3 - Prob. 32ECh. 6.3 - Prob. 33ECh. 6.3 - Prob. 34ECh. 6.3 - Prob. 35ECh. 6.3 - Prob. 36ECh. 6.3 - Prob. 37ECh. 6.3 - Prob. 38ECh. 6.3 - Prob. 39ECh. 6.3 - Prob. 40ECh. 6.3 - Prob. 41ECh. 6.3 - Prob. 42ECh. 6.3 - Prob. 43ECh. 6.3 - Prob. 44ECh. 6.3 - Prob. 45ECh. 6.3 - Prob. 46ECh. 6.3 - Prob. 47ECh. 6.3 - Prob. 48ECh. 6.3 - Prob. 49ECh. 6.3 - Prob. 50ECh. 6.3 - Prob. 51ECh. 6.3 - Prob. 52ECh. 6.3 - Prob. 53ECh. 6.3 - Prob. 54ECh. 6.3 - Prob. 55ECh. 6.3 - Inverse of Special Matrices Find the inverse of...Ch. 6.3 - When Do Matrices Have Inverse? Find the inverse of...Ch. 6.3 - When Do Matrices Have Inverse? Find the inverse of...Ch. 6.3 - When Do Matrices Have Inverse? Find the inverse of...Ch. 6.3 - When Do Matrices Have Inverse? Find the inverse of...Ch. 6.3 - Nutrition A nutritionist is studying the effects...Ch. 6.3 - Nutrition Refer to Exercise 61. Suppose food type...Ch. 6.3 - Sales Commissions A saleswoman works at a kiosk...Ch. 6.3 - Prob. 64ECh. 6.4 - True or false? det(A) is defined only for a square...Ch. 6.4 - Prob. 2ECh. 6.4 - Prob. 3ECh. 6.4 - Fill in the blanks with appropriate numbers to...Ch. 6.4 - Prob. 5ECh. 6.4 - Prob. 6ECh. 6.4 - Prob. 7ECh. 6.4 - Finding Determinants Find the determinant of the...Ch. 6.4 - Prob. 9ECh. 6.4 - Prob. 10ECh. 6.4 - Prob. 11ECh. 6.4 - Prob. 12ECh. 6.4 - Prob. 13ECh. 6.4 - Prob. 14ECh. 6.4 - Prob. 15ECh. 6.4 - Prob. 16ECh. 6.4 - Prob. 17ECh. 6.4 - Prob. 18ECh. 6.4 - Minors and Cofactors Evaluate the minor and...Ch. 6.4 - Prob. 20ECh. 6.4 - Prob. 21ECh. 6.4 - Prob. 22ECh. 6.4 - Prob. 23ECh. 6.4 - Prob. 24ECh. 6.4 - Prob. 25ECh. 6.4 - Prob. 26ECh. 6.4 - Prob. 27ECh. 6.4 - Prob. 28ECh. 6.4 - Prob. 29ECh. 6.4 - Prob. 30ECh. 6.4 - Prob. 31ECh. 6.4 - Prob. 32ECh. 6.4 - Prob. 33ECh. 6.4 - Prob. 34ECh. 6.4 - Prob. 35ECh. 6.4 - Prob. 36ECh. 6.4 - Prob. 37ECh. 6.4 - Prob. 38ECh. 6.4 - Prob. 39ECh. 6.4 - Prob. 40ECh. 6.4 - Prob. 41ECh. 6.4 - Prob. 42ECh. 6.4 - Prob. 43ECh. 6.4 - Prob. 44ECh. 6.4 - Prob. 45ECh. 6.4 - Prob. 46ECh. 6.4 - Prob. 47ECh. 6.4 - Prob. 48ECh. 6.4 - Prob. 49ECh. 6.4 - Prob. 50ECh. 6.4 - Prob. 51ECh. 6.4 - Prob. 52ECh. 6.4 - Prob. 53ECh. 6.4 - Prob. 54ECh. 6.4 - Prob. 55ECh. 6.4 - Prob. 56ECh. 6.4 - Prob. 57ECh. 6.4 - Prob. 58ECh. 6.4 - Prob. 59ECh. 6.4 - Prob. 60ECh. 6.4 - Prob. 61ECh. 6.4 - Prob. 62ECh. 6.4 - Prob. 63ECh. 6.4 - Prob. 64ECh. 6.4 - Prob. 65ECh. 6.4 - Prob. 66ECh. 6.4 - Prob. 67ECh. 6.4 - Prob. 68ECh. 6.4 - Prob. 69ECh. 6.4 - Prob. 70ECh. 6.4 - Prob. 71ECh. 6.4 - The Arch of a Bridge The opening of a railway...Ch. 6.4 - Prob. 73ECh. 6.4 - Prob. 74ECh. 6.4 - Prob. 75ECh. 6.4 - Prob. 76ECh. 6 - Prob. 1CCCh. 6 - Prob. 2CCCh. 6 - Prob. 3CCCh. 6 - Prob. 4CCCh. 6 - What is the reduced row echelon form of a matrix?Ch. 6 - (a) How do Gaussian elimination and Gauss-Jordan...Ch. 6 - If A and B are matrices with the same dimension...Ch. 6 - Prob. 8CCCh. 6 - Prob. 9CCCh. 6 - Prob. 10CCCh. 6 - Prob. 11CCCh. 6 - Prob. 1ECh. 6 - Prob. 2ECh. 6 - Prob. 3ECh. 6 - Prob. 4ECh. 6 - Prob. 5ECh. 6 - Prob. 6ECh. 6 - Prob. 7ECh. 6 - Prob. 8ECh. 6 - Prob. 9ECh. 6 - Prob. 10ECh. 6 - Prob. 11ECh. 6 - Prob. 12ECh. 6 - Prob. 13ECh. 6 - Prob. 14ECh. 6 - Prob. 15ECh. 6 - Prob. 16ECh. 6 - Prob. 17ECh. 6 - Prob. 18ECh. 6 - Prob. 19ECh. 6 - Prob. 20ECh. 6 - Prob. 21ECh. 6 - Prob. 22ECh. 6 - Prob. 23ECh. 6 - Prob. 24ECh. 6 - Prob. 25ECh. 6 - Prob. 26ECh. 6 - Prob. 27ECh. 6 - Prob. 28ECh. 6 - Prob. 29ECh. 6 - Prob. 30ECh. 6 - Prob. 31ECh. 6 - Prob. 32ECh. 6 - Prob. 33ECh. 6 - Prob. 34ECh. 6 - Prob. 35ECh. 6 - Prob. 36ECh. 6 - Prob. 37ECh. 6 - Prob. 38ECh. 6 - Prob. 39ECh. 6 - Prob. 40ECh. 6 - Prob. 41ECh. 6 - Prob. 42ECh. 6 - Prob. 43ECh. 6 - Prob. 44ECh. 6 - Prob. 45ECh. 6 - Prob. 46ECh. 6 - Prob. 47ECh. 6 - Prob. 48ECh. 6 - Prob. 49ECh. 6 - Prob. 50ECh. 6 - Prob. 51ECh. 6 - Prob. 52ECh. 6 - Prob. 53ECh. 6 - Prob. 54ECh. 6 - Prob. 55ECh. 6 - Prob. 56ECh. 6 - Prob. 57ECh. 6 - Prob. 58ECh. 6 - Prob. 59ECh. 6 - Prob. 60ECh. 6 - Prob. 61ECh. 6 - Prob. 62ECh. 6 - Prob. 63ECh. 6 - Prob. 64ECh. 6 - Prob. 65ECh. 6 - Distribution of Cash An ATM at a bank in Qualicum...Ch. 6 - Prob. 67ECh. 6 - Prob. 68ECh. 6 - Prob. 69ECh. 6 - Prob. 70ECh. 6 - Prob. 71ECh. 6 - Prob. 72ECh. 6 - Prob. 73ECh. 6 - Prob. 74ECh. 6 - Prob. 1TCh. 6 - Prob. 2TCh. 6 - Prob. 3TCh. 6 - Prob. 4TCh. 6 - Prob. 5TCh. 6 - Use Gaussian elimination to find the complete...Ch. 6 - Use Gauss-Jordan elimination to find the complete...Ch. 6 - Prob. 8TCh. 6 - Prob. 9TCh. 6 - Prob. 10TCh. 6 - Prob. 11TCh. 6 - Prob. 12TCh. 6 - Prob. 13TCh. 6 - Prob. 14TCh. 6 - Prob. 15TCh. 6 - Prob. 16TCh. 6 - Prob. 17TCh. 6 - Prob. 18TCh. 6 - Prob. 19TCh. 6 - A shopper buys a mixture of nuts; the almonds cost...Ch. 6 - Prob. 1PCh. 6 - Prob. 2PCh. 6 - Prob. 3PCh. 6 - Prob. 4PCh. 6 - Prob. 5PCh. 6 - Prob. 6P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Consider a forest where the population of a particular plant species grows exponentially. In a real-world scenario, we often deal with systems where the analytical function describing the phenomenon is not available. In such cases, numerical methods come in handy. For the sake of this task, however, you are provided with an analytical function so that you can compare the results of the numerical methods to some ground truth. The population P(t) of the plants at time t (in years) is given by the equation: P(t) = 200 0.03 t You are tasked with estimating the rate of change of the plant population at t = 5 years using numerical differentiation methods. First, compute the value of P'(t) at t = 5 analytically. Then, estimate P'(t) at t = 5 years using the following numerical differentiation methods: ⚫ forward difference method (2nd-order accurate) 3 ⚫ backward difference method (2nd-order accurate) ⚫ central difference method (2nd-order accurate) Use h = 0.5 as the step size and round all…arrow_forwardNicole organized a new corporation. The corporation began business on April 1 of year 1. She made the following expenditures associated with getting the corporation started: Expense Date Amount Attorney fees for articles of incorporation February 10 $ 40,500 March 1-March 30 wages March 30 6,550 March 1-March 30 rent Stock issuance costs March 30 2,850 April 1-May 30 wages Note: Leave no answer blank. Enter zero if applicable. April 1 May 30 24,000 16,375 c. What amount can the corporation deduct as amortization expense for the organizational expenditures and for the start-up costs for year 1 [not including the amount determined in part (b)]? Note: Round intermediate calculations to 2 decimal places and final answer to the nearest whole dollar amount. Start-up costs amortized Organizational expenditures amortizedarrow_forwardLast Chance Mine (LCM) purchased a coal deposit for $2,918,300. It estimated it would extract 18,950 tons of coal from the deposit. LCM mined the coal and sold it, reporting gross receipts of $1.24 million, $13 million, and $11 million for years 1 through 3, respectively. During years 1-3, LCM reported net income (loss) from the coal deposit activity in the amount of ($11,400), $550,000, and $502,500, respectively. In years 1-3, LCM extracted 19,950 tons of coal as follows: (1) Tons of Coal 18,950 Depletion (2) Basis (2)(1) Rate $2,918,300 $154.00 Tons Extracted per Year Year 1 4,500 Year 2 8,850 Year 3 6,600 Note: Leave no answer blank. Enter zero if applicable. Enter your answers in dollars and not in millions of dollars. a. What is LCM's cost depletion for years 1, 2, and 3? Cost Depletion Year 1 Year 2 Year 3arrow_forward
- Consider the following equation. log1/9' =6 Find the value of x. Round your answer to the nearest thousandth. x = ✓arrow_forwardExpanding a logarithmic expression: Problem type 3 Use the properties of logarithms to expand the following expression. 4(8+x)² log 5 ) Your answer should not have radicals or exponents. You may assume that all variables are positive. log 4(8 + X 5 -x)²arrow_forwardUse the properties of logarithms to expand the following expression. log 6(x+5)² 3/24 Your answer should not have radicals or exponents. You may assume that all variables are positive. log 6(x + 3 I 4 5)² log Xarrow_forward
- Expanding a logarithmic expression: Problem type 2 Use the properties of logarithms to expand the following expression. 3 yz log 5 x 0/3 An Each logarithm should involve only one variable and should not have any radicals or exponents. You may assume that all variables are positive. log yz 3 厚 5 Explanation Check log ☑ 2025 MG ¿W MIII LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forwardExpanding a logarithmic expression: Problem type 2 Use the properties of logarithms to expand the following expression. 3 yz log 5 x 0/3 An Each logarithm should involve only one variable and should not have any radicals or exponents. You may assume that all variables are positive. log yz 3 厚 5 Explanation Check log ☑ 2025 MG ¿W MIII LLC. All Rights Reserved. Terms of Use | Privacy Centerarrow_forwardWhat is the domain and range, thank you !!arrow_forward
- Assume a bivariate patch p(u, v) over the unit square [0, 1]² that is given as a tensor product patch where u-sections (u fixed to some constant û; v varying across [0, 1]) are quadratic polynomials Pu:û(v) = p(û, v) while v-sections are lines pv:ô (u) = p(u, v). The boundary lines pv:o(u) and pv:1 (u) are specified by their end points p(0,0) 0.8 and p(1,0) 0.2 as well as p(0, 1) 0.3 and p(1, 1) = 0.8. The boundary quadratics pu:o(v) and pu:1 (v) interpolate p(0,0.5) = 0.1 and p(1, 0.5) = 0.9 in addition to the above given four corner-values. = = = Use Pu:û(v) = (1, v, v² ) Mq (Pu:û(0), Pu:û (0.5), Pu:û(1)) with Ma = 1 0 0 -3 4-1 2 4 2 (Pv:ô as well as pu: (u) = (1, u) M₁ (pv:v (0), P: (1)) with M₁ = = (19) 0 to formulate p(u, v) using the "geometric input" G with G = = (P(0,0%) p(0,0) p(0,0.5) p(0,1) ) = ( 0.39 0.8 0.1 0.3 0.2 0.9 0.8 p(1,0) p(1, 0.5) p(1, 1) See the figure below for (left) a selection of iso-lines of p(u, v) and (right) a 3D rendering of p(u, v) as a height surface…arrow_forwardO Functions Composition of two functions: Domain and... Two functions ƒ and g are defined in the figure below. 76 2 8 5 7 8 19 8 9 Domain of f Range of f Domain of g Range of g 3/5 Anthony Find the domain and range of the composition g.f. Write your answers in set notation. (a) Domain of gof: ☐ (b) Range of gof: ☐ Х Explanation Check 0,0,... Español لكا ©2025 McGraw Hill LLC. All Rights Reserved Torms of lico Privacy Contor Accessibility.arrow_forwardTwo functions ƒ and g are defined in the figure below. g 6 6 7 8 8 8 9 Domain of f Range of f Domain of g Range of g Find the domain and range of the composition g.f. Write your answers in set notation. (a) Domain of gof: (b) Range of gof: ☐ ☑ 0,0,...arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning

College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning


UG/ linear equation in linear algebra; Author: The Gate Academy;https://www.youtube.com/watch?v=aN5ezoOXX5A;License: Standard YouTube License, CC-BY
System of Linear Equations-I; Author: IIT Roorkee July 2018;https://www.youtube.com/watch?v=HOXWRNuH3BE;License: Standard YouTube License, CC-BY