
Concept explainers
The chapter sections to review are shown in parentheses at the end of each problem.
a. How does the octet rule explain the formation of a magnesium ion? (6.1)
b. What noble gas has the same electron configuration as the magnesium ion?
c. Why are Group 1A (I) and Group 2A (2) elements found in many compounds, but not Group 8A (18) elements?
(a)

To explain: The formation of magnesium ion by octet rule.
Answer to Problem 59UTC
Solution: Magnesium loses two electrons for the formation of magnesium ion
Explanation of Solution
According to the octet rule, atoms either accept or lose electrons to acquire stable noble gas configuration or completing their octets. Octet means a full set of eight valence electrons.
The number of electrons an atom can accept or lose depends on the valence electrons present in its neutral state. After accepting or losing electrons it will form ions which can be positively or negatively charged.
In the case of magnesium atom, the electronic configuration of magnesium atom is
By the octet rule,
(b)

To determine: Which noble gas has the same electron arrangement as the magnesium ion.
Answer to Problem 59UTC
Solution: The noble gas that has the same electron arrangement as the magnesium ion is the neon gas with atomic symbol Ne.
Explanation of Solution
The electronic configuration of magnesium atom is as follows:
Magnesium ion is formed by losing two electrons the resultant electronic configuration will be:
This is also the electron configuration of noble gas, Neon with atomic symbol Ne.
The noble gas with the electron configuration of magnesium ion is Neon.
(c)

To Explain: The large amount of formation of compounds with elements of Group 1A(1) and Group 2A(2) but not Group 8A (18) elements.
Answer to Problem 59UTC
Solution: Group 1A (1) and Group 2A(2) elements are found to be more reactive than Group 8 A(18) elements because Group1A and Group 2A tend to lose electrons as they have 1 and 2 electrons respectively in their outermost orbital. They lose these electrons to obtain noble gas configuration as per the octet rule. Group 8A elements are un-reactive or inert in nature because they already have complete octet.
Explanation of Solution
All elements try to obtain 8 valence electrons in their outer shell as per the octet rule. Group 1A includes hydrogen, lithium, sodium, potassium, rubidium, cesium and francium. All these elements have one electron in their outermost shell, which they try to lose to obtain the noble gas configuration. Group 2A has beryllium, magnesium, calcium, strontium, barium and radium. All these elements have two electrons in their outermost shell, which they try to lose to obtain the noble gas configurations.
Group 8A elements are noble gas elements consisting of helium, neon, argon, krypton and xenon which have 8 electrons each in their valence shell, so they are very stable. Hence, they are usually not reactive in nature and are also knownas inert elements.
Group 1A and Group 2A elements are more reactive than Group 8A elements.
Want to see more full solutions like this?
Chapter 6 Solutions
Basic Chemistry
- 2. Provide reagents/conditions to accomplish the following syntheses. More than one step is required in some cases. a. CH3arrow_forwardIdentify and provide an explanation that distinguishes a qualitative and quantitative chemical analysis. Provide examples.arrow_forwardIdentify and provide an explanation of the operational principles behind a Atomic Absorption Spectrometer (AAS). List the steps involved.arrow_forward
- Instructions: Complete the questions in the space provided. Show all your work 1. You are trying to determine the rate law expression for a reaction that you are completing at 25°C. You measure the initial reaction rate and the starting concentrations of the reactions for 4 trials. BrO³¯ (aq) + 5Br¯ (aq) + 6H* (aq) → 3Br₂ (l) + 3H2O (l) Initial rate Trial [BrO3] [H*] [Br] (mol/L) (mol/L) | (mol/L) (mol/L.s) 1 0.10 0.10 0.10 8.0 2 0.20 0.10 0.10 16 3 0.10 0.20 0.10 16 4 0.10 0.10 0.20 32 a. Based on the above data what is the rate law expression? b. Solve for the value of k (make sure to include proper units) 2. The proposed reaction mechanism is as follows: i. ii. BrО¸¯ (aq) + H+ (aq) → HBrO3 (aq) HBrO³ (aq) + H* (aq) → H₂BrO3* (aq) iii. H₂BrO³* (aq) + Br¯ (aq) → Br₂O₂ (aq) + H2O (l) [Fast] [Medium] [Slow] iv. Br₂O₂ (aq) + 4H*(aq) + 4Br(aq) → 3Br₂ (l) + H2O (l) [Fast] Evaluate the validity of this proposed reaction. Justify your answer.arrow_forwardе. Д CH3 D*, D20arrow_forwardC. NaOMe, Br Brarrow_forward
- Please predict the products for each of the following reactions: 1.03 2. H₂O NaNH, 1. n-BuLi 2. Mel A H₂ 10 9 0 H2SO4, H₂O HgSO4 Pd or Pt (catalyst) B 9 2 n-BuLi ♡ D2 (deuterium) Lindlar's Catalyst 1. NaNH2 2. EtBr Na, ND3 (deuterium) 2. H₂O2, NaOH 1. (Sia)2BH с Darrow_forwardin the scope of ontario SCH4U grade 12 course, please show ALL workarrow_forwardIs the chemical reaction CuCl42-(green) + 4H2O <==> Cu(H2O)42+(blue) + 4Cl- exothermic or endothermic?arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY





