
Concept explainers
A cell phone sends signals at about 850 MHz (where 1 MHz = 1 × 106 Hz or cycles per second). (a) What is the wavelength of this radiation? (b) What is the energy of 1.0 mol of photons with a frequency of 850 MHz? (c) Compare the energy in part (b) with the energy of a mole of photons of violet light (420 nm). (d) Comment on the difference in energy between 850 MHz radiation and violet light.
(a)

Interpretation: The wavelength of cell phone signal has to be calculated.
Concept introduction:
The frequency of the light is inversely proportional to its wavelength.
Answer to Problem 57GQ
The wavelength of cell phone signal is
Explanation of Solution
The wavelength of phone signal is calculated below.
Given,
The frequency of cell phone signal is
The wavelength of cell phone signal is calculated by using the equation,
The wavelength of cell phone signal is
(b)

Interpretation: The energy per mole of photons of cell phone signal has to be calculated.
Concept introduction:
Planck’s equation,
The energy increases as the wavelength of the light decrease. Also the energy increases as the frequency of the light increases.
Answer to Problem 57GQ
The energy per mole of photons of cell phone signal is
Explanation of Solution
The energy per photon cell phone signal is calculated,
Given,
The frequency of cell phone signal is
The energy per photon cell phone signal is calculated,
Substituting the values to the above equation,
The energy per photon is
The energy per mole of photons of cell phone signal is calculated,
The energy per mole of photons is the product of energy per photon and Avogadro’s number,
Therefore,
The energy per mole of photons of cell phone signal is,
The energy per mole of photons of cell phone signal is
(c)

Interpretation: The energy of violet light is to be compared with
Concept introduction:
- Planck’s equation,
The energy increases as the wavelength of the light decrease. Also the energy increases as the frequency of the light increases.
- The frequency of the light is inversely proportional to its wavelength.
Answer to Problem 57GQ
The energy per mole of photons of cell phone signal is
Explanation of Solution
Given,
The wavelength violet light is
The frequency of violet light is,
The energy per photon of violet light is,
Combining (a) and (b)
Substituting the values to the above equation,
The energy per photon is
- The energy per mole of photons of violet light is calculated,
The energy per mole of photons is the product of energy per photon and Avogadro’s number,
Therefore,
The energy per mole of photons of violet light is,
The energy per mole of photons of violet light is
The energy per mole of photons of cell phone signal is
(d)

Interpretation: The energy difference in violet light and cell phone signal with
Concept introduction:
Planck’s equation,
The energy increases as the wavelength of the light decrease. Also the energy increases as the frequency of the light increases.
Answer to Problem 57GQ
The energy per mole of photons of violet light is
Explanation of Solution
The energy per mole of photons of cell phone signal is
Hence,
Therefore,
The energy per mole of photons of violet light is
Want to see more full solutions like this?
Chapter 6 Solutions
Bundle: Chemistry & Chemical Reactivity, Loose-Leaf Version, 9th + OWLv2, 4 terms (24 Months) Printed Access Card
- What is the final product when D-galactose reacts with hydroxylamine?arrow_forwardIndicate the formula of the product obtained by reacting methyl 5-chloro-5-oxopentanoate with 1 mole of 4-penten-1-ylmagnesium bromide.arrow_forwardIn the two chair conformations of glucose, the most stable is the one with all the OH groups in the equatorial position. Is this correct?arrow_forward
- please help me with my homeworkarrow_forwardhelparrow_forwardThe temperature on a sample of pure X held at 1.25 atm and -54. °C is increased until the sample boils. The temperature is then held constant and the pressure is decreased by 0.42 atm. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 2 0 0 200 400 temperature (K) Xarrow_forward
- QUESTION: Answer Question 5: 'Calculating standard error of regression' STEP 1 by filling in all the empty green boxes *The values are all provided in the photo attached*arrow_forwardpressure (atm) 3 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. 0 0 200 temperature (K) 400 аarrow_forwarder your payment details | bar xb Home | bartleby x + aleksogi/x/isl.exe/1o u-lgNskr7j8P3jH-1Qs_pBanHhviTCeeBZbufuBYT0Hz7m7D3ZcW81NC1d8Kzb4srFik1OUFhKMUXzhGpw7k1 O States of Matter Sketching a described thermodynamic change on a phase diagram 0/5 The pressure on a sample of pure X held at 47. °C and 0.88 atm is increased until the sample condenses. The pressure is then held constant and the temperature is decreased by 82. °C. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 1 3- 0- 0 200 Explanation Check temperature (K) 400 X Q Search L G 2025 McGraw Hill LLC. All Rights Reserved Terms of Use Privacy Cearrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning





