Concept explainers
A cell phone sends signals at about 850 MHz (where 1 MHz = 1 × 106 Hz or cycles per second). (a) What is the wavelength of this radiation? (b) What is the energy of 1.0 mol of photons with a frequency of 850 MHz? (c) Compare the energy in part (b) with the energy of a mole of photons of violet light (420 nm). (d) Comment on the difference in energy between 850 MHz radiation and violet light.
(a)
Interpretation: The wavelength of cell phone signal has to be calculated.
Concept introduction:
The frequency of the light is inversely proportional to its wavelength.
Answer to Problem 57GQ
The wavelength of cell phone signal is
Explanation of Solution
The wavelength of phone signal is calculated below.
Given,
The frequency of cell phone signal is
The wavelength of cell phone signal is calculated by using the equation,
The wavelength of cell phone signal is
(b)
Interpretation: The energy per mole of photons of cell phone signal has to be calculated.
Concept introduction:
Planck’s equation,
The energy increases as the wavelength of the light decrease. Also the energy increases as the frequency of the light increases.
Answer to Problem 57GQ
The energy per mole of photons of cell phone signal is
Explanation of Solution
The energy per photon cell phone signal is calculated,
Given,
The frequency of cell phone signal is
The energy per photon cell phone signal is calculated,
Substituting the values to the above equation,
The energy per photon is
The energy per mole of photons of cell phone signal is calculated,
The energy per mole of photons is the product of energy per photon and Avogadro’s number,
Therefore,
The energy per mole of photons of cell phone signal is,
The energy per mole of photons of cell phone signal is
(c)
Interpretation: The energy of violet light is to be compared with
Concept introduction:
- Planck’s equation,
The energy increases as the wavelength of the light decrease. Also the energy increases as the frequency of the light increases.
- The frequency of the light is inversely proportional to its wavelength.
Answer to Problem 57GQ
The energy per mole of photons of cell phone signal is
Explanation of Solution
Given,
The wavelength violet light is
The frequency of violet light is,
The energy per photon of violet light is,
Combining (a) and (b)
Substituting the values to the above equation,
The energy per photon is
- The energy per mole of photons of violet light is calculated,
The energy per mole of photons is the product of energy per photon and Avogadro’s number,
Therefore,
The energy per mole of photons of violet light is,
The energy per mole of photons of violet light is
The energy per mole of photons of cell phone signal is
(d)
Interpretation: The energy difference in violet light and cell phone signal with
Concept introduction:
Planck’s equation,
The energy increases as the wavelength of the light decrease. Also the energy increases as the frequency of the light increases.
Answer to Problem 57GQ
The energy per mole of photons of violet light is
Explanation of Solution
The energy per mole of photons of cell phone signal is
Hence,
Therefore,
The energy per mole of photons of violet light is
Want to see more full solutions like this?
Chapter 6 Solutions
CHEMISTRY+CHEM...HYBRID ED.(LL)>CUSTOM<
- Gramicidin A can adopt more than one structure; NMR spectroscopy has revealed an “end-to-end” dimer form, and x-ray crystallography has revealed an “anti-parallel double- helical” form. Briefly outline and describe an experimentalapproach/strategy to investigate WHICH configuration (“end-to-end dimer” vs “anti-paralleldouble helical”) gramicidin adopts in an actual lipid bilayer.arrow_forwardDon't used hand raitingarrow_forwardCHEM2323 Problem 2-24 Tt O e: ל Predict the product(s) of the following acid/base reactions. Draw curved arrows to show the formation and breaking of bonds. If the bonds needed are not drawn out, you should redraw them. + BF3 (a) (b) HI + (c) OH -BF Problem 2-25 Use curved arrows and a proton (H+) to draw the protonated form of the following Lewis bases. Before starting, add all missing lone pairs. (a) (b) :0: (c) N 1 CHEM2323 PS CH02 Name:arrow_forward
- CHEM2323 Problem 2-26 Tt O PS CH02 Name: Use the curved-arrow formalism to show how the electrons flow in the resonance form on the left to give the one on the right. (Draw all lone pairs first) (a) NH2 NH2 + (b) Problem 2-27 Double bonds can also act like Lewis bases, sharing their electrons with Lewis acids. Use curved arrows to show how each of the following double bonds will react with H-Cl and draw the resulting carbocation. (a) H2C=CH2 (b) (c) Problem 2-28 Identify the most electronegative element in each of the following molecules: (a) CH2FCI F Problem 2-29 (b) FCH2CH2CH2Br (c) HOCH2CH2NH2 (d) CH3OCH2Li F 0 0 Use the electronegativity table in Figure 2.3 to predict which bond in the following pairs is more polar and indicate the direction of bond polarity for each compound. (a) H3C-Cl or Cl-CI (b) H3C-H or H-CI (c) HO-CH3 or (CH3)3Si-CH3 (d) H3C-Li or Li-OHarrow_forwardDon't used hand raitingarrow_forwardDon't used hand raitingarrow_forward
- at 32.0 °C? What is the osmotic pressure (in atm) of a 1.46 M aqueous solution of urea [(NH2), CO] at 3 Round your answer to 3 significant digits.arrow_forwardReagan is doing an atomic absorption experiment that requires a set of zinc standards in the 0.4-1.6 ppm range. A 1000 ppm Zn solution was prepared by dissolving the necessary amount of solid Zn(NO3)2 in water. The standards can be prepared by diluting the 1000 ppm Zn solution. Table 1 shows one possible set of serial dilutions (stepwise dilution of a solution) that Reagan could perform to make the necessary standards. Solution A was prepared by diluting 5.00 ml of the 1000 ppm Zn standard to 50.00 ml. Solutions C-E are called "calibration standards" because they will be used to calibrate the atomic absorption spectrometer. a. Compare the solution concentrations expressed as ppm Zn and ppm Zn(NO3)2. Compare the concentrations expressed as M Zn and M Zn(NO3)2 - Which units allow easy conversion between chemical species (e.g. Zn and Zn(NO3)2)? - Which units express concentrations in numbers with easily expressed magnitudes? - Suppose you have an analyte for which you don't know the molar…arrow_forwardNonearrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning