Two automobiles of equal mass approach an intersection. One vehicle is traveling with velocity 13.0 m/s toward the east, and the other is traveling north with velocity v2i. Neither driver sees the other. The vehicles collide in the intersection and stick together, leaving parallel skid marks at an angle of 55.0° north of east The speed limit for both roads is 35 mi/h, and the driver of the northward-moving vehicle claims he was within the limit when the collision occurred. Is he telling the truth?
Trending nowThis is a popular solution!
Chapter 6 Solutions
College Physics
Additional Science Textbook Solutions
Conceptual Integrated Science
University Physics (14th Edition)
Glencoe Physical Science 2012 Student Edition (Glencoe Science) (McGraw-Hill Education)
Conceptual Physical Science (6th Edition)
Physics: Principles with Applications
- A rocket has total mass Mi = 360 kg, including Mfuel = 330 kg of fuel and oxidizer. In interstellar space, it starts from rest at the position x = 0, turns on its engine at time t = 0, and puts out exhaust with relative speed ve = 1 500 m/s at the constant rate k = 2.50 kg/s. The fuel will last for a burn time of Tb = Mfuel/k = 330 kg/(2.5 kg/s) = 132 s. (a) Show that during the burn the velocity of the rocket as a function of time is given by v(t)=veln(1ktMi) (b) Make a graph of the velocity of the rocket as a function of time for times running from 0 to 132 s. (c) Show that the acceleration of the rocket is a(t)=kveMikt (d) Graph the acceleration as a function of time. (c) Show that the position of the rocket is x(t)=ve(Mikt)ln(1ktMi)+vet (f) Graph the position during the burn as a function of time.arrow_forwardTwo bumper cars at the county fair are sliding toward one another (see figure below). Initially, bumper car 1 is traveling to the east at 5.62 m/s, and bumper car 2 is traveling 60.0° south of west at 10.00 m/s. After they collide, bumper car 1 is observed to be traveling to the west with a speed of 3.24 m/s. Friction is negligible between the cars and the ground. (a) If the masses of bumper cars 1 and 2 are 588 kg and 633 kg respectively, what is the velocity of bumper car 2 immediately after the collision? (Express your answer in vector form. Enter your answer to at least three significant figures.) (b) What is the kinetic energy lost in the collision?arrow_forwardTwo bumper cars at the county fair are sliding toward one another (see figure below). Initially, bumper car 1 is traveling to the east at 5.70 m/s, and bumper car 2 is traveling 77.7° south of west at 4.25 m/s. They collide and stick together, as the driver of one car reaches out and grabs hold of the other driver. The two bumper cars move off together after the collision, and friction is negligible between the cars and the ground. N W-O»E Car 2 V2i Car 1 V1i (a) If the masses of bumper cars 1 and 2 are 596 kg and 625 kg respectively, what is the velocity of the bumper cars immediately after the collision? magnitude m/s direction ° east of south (b) What is the kinetic energy lost in the collision?arrow_forward
- Two automobiles of equal mass approach an intersection. One vehicle is traveling with velocity 13.0 m/s toward the east, and the other is traveling north with velocity v2i . Neither driver sees the other. The vehicles collide in the intersection and stick together, leaving parallel skid marks at an angle of 55.0° north of east. The speed limit for both roads is 35 mi/h, and the driver of the northward-moving vehicle claims he was within the limit when the collision occurred. Is he telling the truth?arrow_forwardTwo bumper cars at the county fair are sliding toward one another (see figure below). Initially, bumper car 1 is traveling to the east at 5.62 m/s, and bumper car 2 is traveling 60.0° south of west at 10.00 m/s. After they collide, bumper car 1 is observed to be traveling to the west with a speed of 3.16 m/s. Friction is negligible between the cars and the ground.arrow_forwardTwo bumper cars at the county fair are sliding toward one another (see figure below). Initially, bumper car 1 is traveling to the east at 5.65 m/s, and bumper car 2 is traveling 77.7° south of west at 4.10 m/s. They collide and stick together, as the driver of one car reaches out and grabs hold of the other driver. The two bumper cars move off together after the collision, and friction is negligible between the cars and the ground. Car 2 W-OE Car 1 (a) If the masses of bumper cars 1 and 2 are 596 kg and 625 kg respectively, what is the velocity of the bumper cars immediately after the collision? magnitude m/s direction ° east of south (b) What is the kinetic energy lost in the collision?arrow_forward
- A 250-kg flatcar 23 m long is moving with a speed of 7.0 m/s along horizontal frictionless rails. A 95-kg worker starts walking from one end of the car to the other in the direction of motion, with a speed of 3.0 m/s with respect to the car. In the time it takes for him to reach the other end, how far has the flatcar moved?arrow_forwardAn 2000 kg asteroid travels through space at a constant 3 km/s in the +x direction. An alien spaceship lands on the asteroid and grabs it. The spaceship has a mass of 2400 kg and was traveling at 8 km/s at an angle of 40 degrees relative to the +x-axis (towards the northeast) before the collision. What is the magnitude and direction of the asteroid and spaceship’s velocity after the landing? Include a sketch of the before and after motion, with coordinate system.arrow_forwardTwo cars of the same mass approach an extremely icy four-way perpendicular intersection. Car A travels northward at 30 m/s and car B is travelling eastward. They collide and stick together, traveling at 28° north of east. What was the initial velocity of car B?arrow_forward
- A man holding a rock sits on a sled that is sliding across a frozen lake (negligible friction) with a speed of 0.490 m/s. The total mass of the sled, man, and rock is 94.0 kg. The mass of the rock is 0.270 kg and the man can throw it with a speed of 15.5 m/s. Both speeds are relative to the ground. Determine the speed of the sled (in m/s) if the man throws the rock forward (i.e., in the direction the sled is moving). m/s Determine the speed of the sled (in m/s) if the man throws the rock directly backward. m/sarrow_forwardTwo automobiles of equal mass approach an intersection. One vehicle is traveling with velocity 11.3 m/s toward the east, and the other is traveling north with velocity v2i. Neither driver sees the other. The vehicles collide in the intersection and stick together, leaving parallel skid marks at an angle of 60.4° north of east. The speed limit for both roads is 35 mi/h, and the driver of the northward-moving vehicle claims he was within the limit when the collision occurred. Is he telling the truth? Yes/No What was the initial speed of the northward-moving vehicle? mi/harrow_forwardA wagon is rolling forward on level ground. Friction is negligible. The person sitting in the wagon is holding a rock. The total mass of the wagon, rider, and rock is 97.1 kg. The mass of the rock is 0.263 kg. Initially the wagon is rolling forward at a speed of 0.454 m/s. Then the person throws the rock with a speed of 16.9 m/s. Both speeds are relative to the ground. Find the speed of the wagon after the rock is thrown (a) directly forward in one case and (b) directly backward in another. (a) v = i (b) v = M.arrow_forward
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning