Concept explainers
a)
Interpretation: The hybridization on central atom in
Concept introduction: Bonding between atoms in covalent molecule is shown by diagrams known as Lewis structures. These also show lone pairs in molecule.
Steps to determine Lewis dot diagram is as follows:
1. Count total valence electrons of central atom to add valence electrons from all atoms present. If species is negative ion, add electrons to achieve the total charge. If it is positive ion, subtract electrons to result in total charge.
2. Calculate total electrons that each atom has noble gas configuration of electrons around it.
3. Calculate the difference of electron. This determines the number of shared electrons.
4. Then assign two electrons to each bond in molecule or ion.
5. If electrons are left place them as double or triple bonds.
6. Place remaining electrons as lone pairs to atom, to satisfy octet of atom except hydrogen.
7. Determine formal charge of each atom.
Hybridization is mixing of two atomic orbitals with same energy level to give new orbital. This is based on
The hybridization can be determined by number of hybrid orbitals or steric number formed by the atom. The formula to calculate steric number is as follows:
The hybridization is predicted as follows:
1. If value of SN is 2, two hybrid orbitals are formed and hybridization will be sp.
2. If value of SN is 3, three hybrid orbitals are formed and hybridization will be
3. If value of SN is 4, four hybrid orbitals are formed and hybridization will be
4. If value of SN is 5, five hybrid orbitals are formed and hybridization will be
5. If value of SN is 6, six hybrid orbitals are formed and hybridization will be
b)
Interpretation: The hybridization on carbon atom in
Concept introduction: Bonding between atoms in covalent molecule is shown by diagrams known as Lewis structures. These also show lone pairs in molecule.
Steps to determine Lewis dot diagram is as follows:
1. Count total valence electrons of central atom to add valence electrons from all atoms present. If species is negative ion, add electrons to achieve the total charge. If it is positive ion, subtract electrons to result in total charge.
2. Calculate total electrons that each atom has noble gas configuration of electrons around it.
3. Calculate the difference of electron. This determines the number of shared electrons.
4. Then assign two electrons to each bond in molecule or ion.
5. If electrons are left place them as double or triple bonds.
6. Place remaining electrons as lone pairs to atom, to satisfy octet of atom except hydrogen.
7. Determine formal charge of each atom.
Hybridization is mixing of two atomic orbitals with same energy level to give new orbital. This is based on quantum mechanics. The atomic orbitals of equal energy level only are part of hybridization.
The hybridization can be determined by number of hybrid orbitals or steric number formed by the atom. The formula to calculate steric number is as follows:
The hybridization is predicted as follows:
1. If value of SN is 2, two hybrid orbitals are formed and hybridization will be sp.
2. If value of SN is 3, three hybrid orbitals are formed and hybridization will be
3. If value of SN is 4, four hybrid orbitals are formed and hybridization will be
4. If value of SN is 5, five hybrid orbitals are formed and hybridization will be
5. If value of SN is 6, six hybrid orbitals are formed and hybridization will be
c)
Interpretation: The hybridization on central atom in
Concept introduction: Bonding between atoms in covalent molecule is shown by diagrams known as Lewis structures. These also show lone pairs in molecule.
Steps to determine Lewis dot diagram is as follows:
1. Count total valence electrons of central atom to add valence electrons from all atoms present. If species is negative ion, add electrons to achieve the total charge. If it is positive ion, subtract electrons to result in total charge.
2. Calculate total electrons that each atom has noble gas configuration of electrons around it.
3. Calculate the difference of electron. This determines the number of shared electrons.
4. Then assign two electrons to each bond in molecule or ion.
5. If electrons are left place them as double or triple bonds.
6. Place remaining electrons as lone pairs to atom, to satisfy octet of atom except hydrogen.
7. Determine formal charge of each atom.
Hybridization is mixing of two atomic orbitals with same energy level to give new orbital. This is based on quantum mechanics. The atomic orbitals of equal energy level only are part of hybridization.
The hybridization can be determined by number of hybrid orbitals or steric number formed by the atom. The formula to calculate steric number is as follows:
The hybridization is predicted as follows:
1. If value of SN is 2, two hybrid orbitals are formed and hybridization will be sp.
2. If value of SN is 3, three hybrid orbitals are formed and hybridization will be
3. If value of SN is 4, four hybrid orbitals are formed and hybridization will be
4. If value of SN is 5, five hybrid orbitals are formed and hybridization will be
5. If value of SN is 6, six hybrid orbitals are formed and hybridization will be
d)
Interpretation: The hybridization on central carbon atom in
Concept introduction: Bonding between atoms in covalent molecule is shown by diagrams known as Lewis structures. These also show lone pairs in molecule.
Steps to determine Lewis dot diagram is as follows:
1. Count total valence electrons of central atom to add valence electrons from all atoms present. If species is negative ion, add electrons to achieve the total charge. If it is positive ion, subtract electrons to result in total charge.
2. Calculate total electrons that each atom has noble gas configuration of electrons around it.
3. Calculate the difference of electron. This determines the number of shared electrons.
4. Then assign two electrons to each bond in molecule or ion.
5. If electrons are left place them as double or triple bonds.
6. Place remaining electrons as lone pairs to atom, to satisfy octet of atom except hydrogen.
7. Determine formal charge of each atom.
Hybridization is mixing of two atomic orbitals with same energy level to give new orbital. This is based on quantum mechanics. The atomic orbitals of equal energy level only are part of hybridization.
The hybridization can be determined by number of hybrid orbitals or steric number formed by the atom. The formula to calculate steric number is as follows:
The hybridization is predicted as follows:
1. If value of SN is 2, two hybrid orbitals are formed and hybridization will be sp.
2. If value of SN is 3, three hybrid orbitals are formed and hybridization will be
3. If value of SN is 4, four hybrid orbitals are formed and hybridization will be
4. If value of SN is 5, five hybrid orbitals are formed and hybridization will be
5. If value of SN is 6, six hybrid orbitals are formed and hybridization will be
e)
Interpretation: The hybridization on central atom in
Concept introduction: Bonding between atoms in covalent molecule is shown by diagrams known as Lewis structures. These also show lone pairs in molecule.
Steps to determine Lewis dot diagram is as follows:
1. Count total valence electrons of central atom to add valence electrons from all atoms present. If species is negative ion, add electrons to achieve the total charge. If it is positive ion, subtract electrons to result in total charge.
2. Calculate total electrons that each atom has noble gas configuration of electrons around it.
3. Calculate the difference of electron. This determines the number of shared electrons.
4. Then assign two electrons to each bond in molecule or ion.
5. If electrons are left place them as double or triple bonds.
6. Place remaining electrons as lone pairs to atom, to satisfy octet of atom except hydrogen.
7. Determine formal charge of each atom.
Hybridization is mixing of two atomic orbitals with same energy level to give new orbital. This is based on quantum mechanics. The atomic orbitals of equal energy level only are part of hybridization.
The hybridization can be determined by number of hybrid orbitals or steric number formed by the atom. The formula to calculate steric number is as follows:
The hybridization is predicted as follows:
1. If value of SN is 2, two hybrid orbitals are formed and hybridization will be sp.
2. If value of SN is 3, three hybrid orbitals are formed and hybridization will be
3. If value of SN is 4, four hybrid orbitals are formed and hybridization will be
4. If value of SN is 5, five hybrid orbitals are formed and hybridization will be
5. If value of SN is 6, six hybrid orbitals are formed and hybridization will be
Want to see the full answer?
Check out a sample textbook solutionChapter 6 Solutions
Bundle: Principles of Modern Chemistry, 8th + OWLv2, 1 term (6 months) Printed Access Card
- Draw a Lewis dot structure for C2H4Oarrow_forward3.3 Consider the variation of molar Gibbs energy with pressure. 3.3.1 Write the mathematical expression for the slope of graph of molar Gibbs energy against 3.3.2 pressure at constant temperature. Draw in same diagram graphs showing variation with pressure of molar Gibbs energies of a substance in gaseous, liquid and solid forms at constant temperature. 3.3.3 Indicate in your graphs melting and boiling points. 3.3.4 Indicate for the respective phases the regions of relative stability.arrow_forwardIn 2-chloropropane, the signal for the H on the C next to Cl should be split into how many peaks?arrow_forward
- 4.4 Consider as perfect gas 3.0 mol of argon gas to which 229 J of energy is supplied as heat at constant pressure and temperature increases by 2.55 K. Calculate 4.4.1 constant pressure molar heat capacity. 4.4.2 constant volume molar heat capacity.arrow_forward3.2 32 Consider calibrating a calorimeter and measuring heat transferred. A sample of compound was burned in a calorimeter and a temperature change of 3.33°C recorded. When a 1.23 A current from a 12.0 V source was passed through a heater in the same calorimeter for 156 s, the temperature changed of 4.47°C was recorded. 3.2.1 Calculate the heat supplied by the heater. 3.2.2 Calculate the calorimeter constant. 3.2.3 Calculate the heat released by the combustion reaction.arrow_forward-.1 Consider the standard enthalpy of formation of gaseous water at 25°C as -241.82 kJ/mol and calculate the standard enthalpy of formation of gaseous water at 100°C.arrow_forward
- 3.5 Complete the following sentences to make correct scientific meaning. 3.5.1 The entropy of a perfect gas. 3.5.2 when it expands isothermally. The change in entropy of a substance accompanying a change of state at its transition 3.5.3 temperature is calculated from its of transition. The increase in entropy when a substance is heated is calculated from itsarrow_forward3.4 Consider the internal energy of a substance 3.4.1 Draw a graph showing the variation of internal energy with temperature at constant volume 3.4.2 Write the mathematical expression for the slope in your graph in 3.4.1arrow_forwardFor a system, the excited state decays to the ground state with a half-life of 15 ns, emitting radiation of 6000 Å. Determine the Einstein coefficients for stimulated absorption and spontaneous emission and the dipole moment of the transition. Data: epsilon 0 = 8.85419x10-12 C2m-1J-1arrow_forward
- Problem a. The following compounds have the same molecular formula as benzene. How many monobrominated products could each form? 1. HC =CC=CCH2CH3 2. CH2=CHC = CCH=CH₂ b. How many dibrominated products could each of the preceding compounds form? (Do not include stereoisomers.)arrow_forwardDon't used Ai solutionarrow_forward4.3 Explain the following terms: 4.3.1 Normal boiling point. 4.3.2 Cooling curve. 4.3.3 Congruent melting. 4.3.4 Ideal solution. 4.3.5 Phase diagram of a pure substance.arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning