Write the ground state electron configuration for
(a) Mg, Mg2+(b) N, N3-
(c) Ti, Ti4+
(d) Sn2+ Sn4+
(a)
Interpretation:
To state the ground state electronic configuration for
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration one can get details of the number of electrons present in each sublevel. A cation is formed when the parent atom loose one or more electrons. An anion is formed by the gain of one or more electrons by the parent atom in its valence shell.
When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. While writing the electronic configuration, it is assumed that atom is present in its isolated state. Electrons are filled in order of the increasing energies of the various sublevels. Atomic number of an element gives the total number of electrons present in an atom. When the ground state electronic configuration of an atom is written, it is assumed that none of its electrons have been excited to the higher energy level.
Answer to Problem 49QAP
The ground state electronic configuration for Mg is
The ground state electronic configuration for Mg2+ is
Explanation of Solution
Since the atomic number of Magnesium (Mg) is 12, therefore its ground state electronic configuration is:
This filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place. Mg2+ is formed from Mg after the loss of two electrons from its valence shell. This means that loss of two electrons take place from 3s orbital of Mg to form Mg2+cation. The electronic configuration of Mg2+becomes:
(b)
Interpretation:
To state the ground state electronic configuration for
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration one can get details of the number of electrons present in each sublevel. A cation is formed when the parent atom loose one or more electrons. An anion is formed by the gain of one or more electrons by the parent atom in its valence shell.
When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. While writing the electronic configuration, it is assumed that atom is present in its isolated state. Electrons are filled in order of the increasing energies of the various sublevels. Atomic number of an element gives the total number of electrons present in an atom. When the ground state electronic configuration of an atom is written, it is assumed that none of its electrons have been excited to the higher energy level.
Answer to Problem 49QAP
The ground state electronic configuration for N is
The ground state electronic configuration forN3- is
Explanation of Solution
Since the atomic number of Nitrogen atom denoted by N is 7, therefore its ground state electronic configuration is:
This filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place. When N atom gains three electrons in order to complete its octet, it leads to the formation of an anion namely, nitride ion denoted by N3-.The electronic configuration of N3-becomes:
(c)
Interpretation:
To state the ground state electronic configuration for
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration one can get details of the number of electrons present in each sublevel. A cation is formed when the parent atom loose one or more electrons. An anion is formed by the gain of one or more electrons by the parent atom in its valence shell.
When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. While writing the electronic configuration, it is assumed that atom is present in its isolated state. Electrons are filled in order of the increasing energies of the various sublevels. Atomic number of an element gives the total number of electrons present in an atom. When the ground state electronic configuration of an atom is written, it is assumed that none of its electrons have been excited to the higher energy level.
Answer to Problem 49QAP
The ground state electronic configuration for Ti is 1s22s22p6 3s23p63d24s2
The ground state electronic configuration for Ti4+is 1s22s22p6 3s23p6
Explanation of Solution
Since the atomic number of Titanium atom denoted by Ti is 22, therefore its ground state electronic configuration is:
This filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place. When Ti loses four electrons it form Ti4+cation and the electronic configuration of resultant cation becomes;
(d)
Interpretation:
To state the ground state electronic configuration for
Concept introduction:
The simplest method for describing the arrangement of electrons in an atom is by writing its electronic configuration. Since the set of four quantum numbers is used to describe the atomic orbitals in an atom, therefore by writing the electronic configuration one can get details of the number of electrons present in each sublevel. A cation is formed when the parent atom loose one or more electrons. An anion is formed by the gain of one or more electrons by the parent atom in its valence shell.
When the electronic configuration of an atom is written, it describes the number of electron present in each sublevel by the superscript. While writing the electronic configuration, it is assumed that atom is present in its isolated state. Electrons are filled in order of the increasing energies of the various sublevels. Atomic number of an element gives the total number of electrons present in an atom. When the ground state electronic configuration of an atom is written, it is assumed that none of its electrons have been excited to the higher energy level.
Answer to Problem 49QAP
The ground state electronic configuration of Sn2+ is
The ground state electronic configuration of Sn4+ is
Explanation of Solution
Since the atomic number of Tin atom denoted by Sn is 50, therefore its ground state electronic configuration is:
This filling of electrons in the atomic orbitals takes place according to the Aufbau principal which states that when an atom is present in its ground state, electrons are filled in order of increasing energy of the orbitals, which means that firstly lower energy orbitals are filled, and then filling of higher energy orbitals takes place. Sn has the tendency to form both Sn2+ and Sn4+cations by losing two and four electrons respectively. When it loses two electrons from outer 5p orbital it forms Sn2+whose electronic configuration is:
When it loses four electrons (two from 5p and two from 5s), then it forms Sn4+, and the electronic configuration becomes:
Want to see more full solutions like this?
Chapter 6 Solutions
Chemistry: Principles and Reactions
- Denote the dipole for the indicated bonds in the following molecules. H3C ✓ CH3 B F-CCl 3 Br-Cl H3C Si(CH3)3 wwwwwww OH НО. HO HO OH vitamin C CH3arrow_forwardFor the SN2 reaction, draw the major organic product and select the correct (R) or (S) designation around the stereocenter carbon in the organic substrate and organic product. Include wedge-and-dash bonds and draw hydrogen on a stereocenter. Η 1 D EN Select Draw Templates More C H D N Erasearrow_forwardQ9: Explain why compound I is protonated on O while compound II is protonated on N. NH2 NH2 I IIarrow_forward
- AN IR spectrum, a 13 CMR spectrum, and a 1 HMR spectrum were obtained for an unknown structure with a molecular formula of C9H10. Draw the structure of this compound.arrow_forwardAN IR spectrum, a 13 CMR spectrum, and a 1 HMR spectrum were obtained for an unknown structure with a molecular formula of C9H10. Draw the structure of this compound.arrow_forward(a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3¯)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forward
- Q8: Draw the resonance structures for the following molecule. Show the curved arrows (how you derive each resonance structure). Circle the major resonance contributor.arrow_forwardQ4: Draw the Lewis structures for the cyanate ion (OCN) and the fulminate ion (CNO). Draw all possible resonance structures for each. Determine which form for each is the major resonance contributor.arrow_forwardIn the following molecule, indicate the hybridization and shape of the indicated atoms. CH3 N CH3 HÖ: H3C CI: ::arrow_forward
- Q3: Draw the Lewis structures for nitromethane (CH3NO2) and methyl nitrite (CH3ONO). Draw at least two resonance forms for each. Determine which form for each is the major resonance contributor.arrow_forwardQ1: Draw a valid Lewis structures for the following molecules. Include appropriate charges and lone pair electrons. If there is more than one Lewis structure available, draw the best structure. NH3 Sulfate Boron tetrahydride. C3H8 (linear isomer) OCN NO3 CH3CN SO2Cl2 CH3OH2*arrow_forwardQ2: Draw all applicable resonance forms for the acetate ion CH3COO. Clearly show all lone pairs, charges, and arrow formalism.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY