Concept explainers
(a)
The angle of the rope with the vertical.
(a)

Answer to Problem 44PQ
The angle of the rope with the vertical is
Explanation of Solution
Assume the man as a particle of mass
The following figure gives the direction of all forces on the man.
Apply equilibrium condition of forces along
Here,
Write the expression for net forces along
Here,
From figure1, expand equation (I) using all forces along
Here,
Rearrange above equation to get
From figure1, expand equation (II) using all forces along
Here,
Rearrange above equation to get
Divide equation (IV) by (III) to get
In problem it is allowed to ignore effect of air drag force.
Substitute
Conclusion:
Substitute
Therefore, the angle of the rope with the vertical is
(b)
The expression for the angle made by the rope with the vertical as a function of time by considering drag force due to air.
(b)

Answer to Problem 44PQ
The expression for the angle made by the rope with the vertical as a function of time by considering drag force due to air is
Explanation of Solution
Write the expression for the drag force.
Here,
Since man is modeled as a particle of dimeter
Write the expression for the velocity of the particle at each instant of time.
Here,
Conclusion:
Substitute
Substitute
Substitute
Substitute
Therefore, the expression for the angle made by the rope with the vertical as a function of time by considering drag force due to air is
(c)
Whether terminal speed is a meaningful concept for this situation and explain the reason.
(c)

Answer to Problem 44PQ
Terminal speed is not a meaningful concept for this situation since helicopter provides net acceleration at every time and never reaches a zero net force situation.
Explanation of Solution
Terminal speed is constant speed attained by a body moving in a fluid so that drag force is proportional to velocity of the body. Consider situation of a body moving through a fluid. The forces acting are gravitational force and drag force. Gravitational force is a constant force whereas drag force depends on velocity of the body at each instant of time. At particular point when drag force equal to gravitational force the body takes constant velocity.
In this case drag force depends on square of velocity of the body. As the drag force increases the helicopter exerts more force to provide constant acceleration
(d)
The effect on tension if the helicopter continues to accelerate and the result for a real rope in this situation.
(d)

Answer to Problem 44PQ
The tension in the helicopter is inversely proportional to cosine of angle made by the rope with the vertical. As helicopter accelerates, angle made by the rope with the vertical increases. Thus, tension in the rope increases as the helicopter accelerates.
Explanation of Solution
Rearrange equation (III) to get
Therefore, tension in the rope continues to increase as the helicopter accelerates. A real rope has certain limit to withstand tension. After a particular value it will break.
Want to see more full solutions like this?
Chapter 6 Solutions
EBK WEBASSIGN FOR KATZ'S PHYSICS FOR SC
- Review Conceptual Example 2 before attempting this problem. Two slits are 0.158 mm apart. A mixture of red light (wavelength = 693 nm) and yellow-green light (wavelength = 567 nm) falls on the slits. A flat observation screen is located 2.42 m away. What is the distance on the screen between the third-order red fringe and the third-order yellow-green fringe? m = 3 m = 3 m = 0 m = 3 m = 3 Fringes on observation screenarrow_forwardA film of oil lies on wet pavement. The refractive index of the oil exceeds that of the water. The film has the minimum nonzero thickness such that it appears dark due to destructive interference when viewed in visible light with wavelength 643 nm in vacuum. Assuming that the visible spectrum extends from 380 to 750 nm, what is the longest visible wavelength (in vacuum) for which the film will appear bright due to constructive interference? Number Unitsarrow_forwardA piece of metal is placed on top of a 2.0 - kg wooden block (mass density = 562 kg/m³) piece. UseArchimedes' principle to calculate the mass (in kg) of copper if the top of the wood surface is exactly at thewater's surface?arrow_forward
- A filmmaker wants to achieve an interesting visual effect by filming a scene through a converging lens with a focal length of 50.0 m. The lens is placed betwen the camera and a horse, which canters toward the camera at a constant speed of 7.9 m/s. The camera starts rolling when the horse is 36.0 m from the lens. Find the average speed of the image of the horse (a) during the first 2.0 s after the camera starts rolling and (b) during the following 2.0 s.arrow_forwardAnswer the question (Physics)arrow_forwardsolve smybolically and plug in numbers and solve at the endarrow_forward
- answer the question symbolically until you have to plug in numbers. show all work please.arrow_forwardWhat is the direction of the magnetic force on a NEGATIVE CHARGE that moves as shown in each of the six cases?arrow_forwardHi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forward
- Examine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forwardIn addition to the anyalysis of the graph, show mathematically that the slope of that line is 2π/√g . Using the slope of your line calculate the value of g and compare it to 9.8.arrow_forwardAn object is placed 24.1 cm to the left of a diverging lens (f = -6.51 cm). A concave mirror (f= 14.8 cm) is placed 30.2 cm to the right of the lens to form an image of the first image formed by the lens. Find the final image distance, measured relative to the mirror. (b) Is the final image real or virtual? (c) Is the final image upright or inverted with respect to the original object?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





