
Concept explainers
(a)
The angle of the rope with the vertical.
(a)

Answer to Problem 44PQ
The angle of the rope with the vertical is
Explanation of Solution
Assume the man as a particle of mass
The following figure gives the direction of all forces on the man.
Apply equilibrium condition of forces along
Here,
Write the expression for net forces along
Here,
From figure1, expand equation (I) using all forces along
Here,
Rearrange above equation to get
From figure1, expand equation (II) using all forces along
Here,
Rearrange above equation to get
Divide equation (IV) by (III) to get
In problem it is allowed to ignore effect of air drag force.
Substitute
Conclusion:
Substitute
Therefore, the angle of the rope with the vertical is
(b)
The expression for the angle made by the rope with the vertical as a function of time by considering drag force due to air.
(b)

Answer to Problem 44PQ
The expression for the angle made by the rope with the vertical as a function of time by considering drag force due to air is
Explanation of Solution
Write the expression for the drag force.
Here,
Since man is modeled as a particle of dimeter
Write the expression for the velocity of the particle at each instant of time.
Here,
Conclusion:
Substitute
Substitute
Substitute
Substitute
Therefore, the expression for the angle made by the rope with the vertical as a function of time by considering drag force due to air is
(c)
Whether terminal speed is a meaningful concept for this situation and explain the reason.
(c)

Answer to Problem 44PQ
Terminal speed is not a meaningful concept for this situation since helicopter provides net acceleration at every time and never reaches a zero net force situation.
Explanation of Solution
Terminal speed is constant speed attained by a body moving in a fluid so that drag force is proportional to velocity of the body. Consider situation of a body moving through a fluid. The forces acting are gravitational force and drag force. Gravitational force is a constant force whereas drag force depends on velocity of the body at each instant of time. At particular point when drag force equal to gravitational force the body takes constant velocity.
In this case drag force depends on square of velocity of the body. As the drag force increases the helicopter exerts more force to provide constant acceleration
(d)
The effect on tension if the helicopter continues to accelerate and the result for a real rope in this situation.
(d)

Answer to Problem 44PQ
The tension in the helicopter is inversely proportional to cosine of angle made by the rope with the vertical. As helicopter accelerates, angle made by the rope with the vertical increases. Thus, tension in the rope increases as the helicopter accelerates.
Explanation of Solution
Rearrange equation (III) to get
Therefore, tension in the rope continues to increase as the helicopter accelerates. A real rope has certain limit to withstand tension. After a particular value it will break.
Want to see more full solutions like this?
Chapter 6 Solutions
Physics for Scientists and Engineers: Foundations and Connections
- No chatgpt pls will upvotearrow_forwardUniform Circular motion. 1. Mini Lecture 2. Let the position of a particle be given by: (t) = Rcos (wt)i + Rsin (wt)j 3. Calculate the expression for the velocity vector and show that the velocity vector is tangential to the circumference of the circle. 4. Calculate the expression for the acceleration vector and show that the acceleration vector points radially inward. 5. Calculate the magnitude of the velocity and magnitude of the acceleration, and therefore show that v2 a = Rarrow_forward4. A ball is thrown vertically up, its speed. slowing under the influence of gravity. Suppose (A) we film this motion and play the tape backward (so the tape begins with the ball at its highest point and ends with it reaching the point from which it was released), and (B) we observe the motion of the ball from a frame of reference moving up at the initial speed of the ball. The ball has a downward acceleration g in: a. A and B b. Only A c. Only B d. Neither A nor Barrow_forward
- 2. Consider a 2.4 m long propeller that operated at a constant 350 rpm. Find the acceleration of a particle at the tip of the propeller.arrow_forward2. A football is kicked at an angle 37.0° above the horizontal with a velocity of 20.0 m/s, as Calculate (a) the maximum height, (b) the time of travel before the football hits the ground, and (c) how far away it hits the ground. Assume the ball leaves the foot at ground level, and ignore air resistance, wind, and rotation of the ball.arrow_forwardPlease don't use Chatgpt will upvote and give handwritten solutionarrow_forward
- Cam mechanisms are used in many machines. For example, cams open and close the valves in your car engine to admit gasoline vapor to each cylinder and to allow the escape of exhaust. The principle is illustrated in the figure below, showing a follower rod (also called a pushrod) of mass m resting on a wedge of mass M. The sliding wedge duplicates the function of a rotating eccentric disk on a camshaft in your car. Assume that there is no friction between the wedge and the base, between the pushrod and the wedge, or between the rod and the guide through which it slides. When the wedge is pushed to the left by the force F, the rod moves upward and does something such as opening a valve. By varying the shape of the wedge, the motion of the follower rod could be made quite complex, but assume that the wedge makes a constant angle of 0 = 15.0°. Suppose you want the wedge and the rod to start from rest and move with constant acceleration, with the rod moving upward 1.00 mm in 8.00 ms. Take m…arrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- No chatgpt plsarrow_forwardA rectangular current loop (a = 15.0 cm, b = 34.0 cm) is located a distance d = 10.0 cm near a long, straight wire that carries a current (Iw) of 17.0 A (see the drawing). The current in the loop is IL = 21.0 A. Determine the magnitude of the net magnetic force that acts on the loop. Solve in N. a b IL Iwarrow_forwardTwo long, straight wires are separated by distance, d = 22.0 cm. The wires carry currents of I1 = 7.50 A and I2 = 5.50 A in opposite directions, as shown in the figure. Find the magnitude of the net magnetic field at point (B). Let r₁ = 12.0 cm, r2 = 7.00 cm, and r3 = 13.0 cm. Solve in T. 12 d A √3arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College





