(a)
Interpretation:
To justify whether the given statement is true or false.
Concept Introduction:
The water molecule is formed by the combination of hydrogen and oxygen atoms in 2:1 ratio, the molecular formula of the water is

Answer to Problem 42P
True.
Explanation of Solution
Given:
The properties that make water a good solvent are its polarity and its capacity for hydrogen bonding.
The water molecule is polar due to presence of electronegative oxygen and electropositive hydrogen atom, this result in difference in electro-negativities between the atoms in the molecule. This polarity results in good solvent of water as it gives ability to stick to itself, other substances, and have surface tension. The water molecule also forms hydrogen bonding between them due to the presence of oxygen and hydrogen atoms. Due to polarity water forms electrostatic attraction between other polar molecules and ions.
(b)
Interpretation:
To justify whether the given statement is true or false.
Concept Introduction:
The compounds formed by the complete transfer of electrons between the atoms is said to be the ionic compound and force of attraction between them is electrostatic force of attraction.

Answer to Problem 42P
True.
Explanation of Solution
Given:
When ionic compounds dissolve in water, their ions become solvated by water molecules.
Ionic compounds have atoms which are oppositely charged, known as ions, arranged in such a way to form a lattice. On adding an ionic compound (polar) to water, the ions get attracted to the water molecules as water is also polar in nature. The force of attraction between the ions and water molecule is strong enough to break the bond between the ionic compounds thus, resulting in dissociation of ions and ions gets dispersed in solution by forming the bonds with water (
(c)
Interpretation:
To justify whether the given statement is true or false.
Concept Introduction:
The water molecule is formed by the combination of hydrogen and oxygen atoms in 2:1 ratio, the molecular formula of the water is

Answer to Problem 42P
True.
Explanation of Solution
Given:
The term “water of hydration” refers to the number of water molecules that surround an ion in aqueous solution.
Water molecule that is chemically combined with a substance to form a hydrate is said to be the water of hydration. The removal of water hydration can be done (either by heating) that do not change the composition of the substance. The hydration generally occurs with secondary minerals.
For example:
(d)
Interpretation:
To justify whether the given statement is true or false.
Concept Introduction:
The water molecule is formed by the combination of hydrogen and oxygen atoms in 2:1 ratio, the molecular formula of the water is

Answer to Problem 42P
True.
Explanation of Solution
Given:
The term “anhydrous” means “without water”.
The absence of water in a compound is described by the term anhydrous, which means that the structure of compound have no water molecule in it.
(e)
Interpretation:
To justify whether the given statement is true or false.
Concept Introduction:
On dissolving electrolyte (polar in nature) in polar solvents, they get separated into its respective ions that are cations and anions.

Answer to Problem 42P
True.
Explanation of Solution
Given:
An electrolyte is a substance that dissolves in water to give a solution that conducts electricity.
An electrolyte is a substance that dissolves in water to give a solution that conducts electricity. On dissolving electrolyte (polar in nature) in polar solvents, they get separated into its respective ions that are cations and anions, which are dispersed uniformly in the solvent. On applying electric potential to such solutions, the ions are drawn to the electrodes due to the abundance and deficiency of electrons on ions thus, resulting in conduction of electricity.
(f)
Interpretation:
To justify whether the given statement is true or false.
Concept Introduction:
The formation of ions takes place by the loss or gain of electron. The cation results from the loss of electron whereas the anion results from the gaining of electron by the atom.

Answer to Problem 42P
True.
Explanation of Solution
Given:
In a solution that conducts electricity, cations migrate towards the cathode and anions migrate towards the anode.
The loss of electron(s) from the atom results in the formation of cation and the gain of electron(s) by the atom results in the formation of anion. The cathode is negatively charged electrode whereas the positively charged electrode is anode. Since the unlike charges attract so, the cations which are positively charged will move towards negative electrode, cathode whereas the anions which are negatively charged will move towards positive electrode, anode.
(g)
Interpretation:
To justify whether the given statement is true or false.
Concept Introduction:
The formation of ions takes place by the loss or gain of electron. The cation results from the loss of electron whereas the anion results from the gaining of electron by the atom.

Answer to Problem 42P
True.
Explanation of Solution
Given:
Ions must be present in a solution for the solution to conduct electricity.
On dissolving electrolyte (polar in nature) in polar solvents, they get separated into its respective ions that are cations and anions, which are dispersed uniformly in the solvent. On applying electric potential to such solutions, the ions are drawn to the electrodes due to the abundance and deficiency of electrons on ions thus, resulting in conduction of electricity.
(h)
Interpretation:
To justify whether the given statement is true or false.
Concept Introduction:
The substances that do not dissociate into ions and thus, are non-conductor of electricity are said to be non-electrolytes.

Answer to Problem 42P
True.
Explanation of Solution
Given:
Distilled water is a nonelectrolyte.
Water in its pure form does not conduct electricity. The conduction of electricity takes place only due to the presence of ions. In distilled water, there are no such ions present which can conduct electricity thus, distilled water is a nonelectrolyte.
(i)
Interpretation:
To justify whether the given statement is true or false.
Concept Introduction:
A substance that dissolves in water to give a solution that conducts electricity is said to be an electrolyte.

Answer to Problem 42P
True.
Explanation of Solution
Given:
A strong electrolyte is a substance that completely dissociates into ions.
An electrolyte is a substance that dissolves in water to give a solution that conducts electricity. On dissolving electrolyte (polar in nature) in polar solvents, they get separated into its respective ions that are cations and anions, which are dispersed uniformly in the solvent. On applying electric potential to such solutions, the ions are drawn to the electrodes due to the abundance and deficiency of electrons on ions thus, resulting in conduction of electricity.
(j)
Interpretation:
To justify whether the given statement is true or false.
Concept Introduction:
A substance that dissolves in water to give a solution that conducts electricity is said to be an electrolyte.

Answer to Problem 42P
False.
Explanation of Solution
Given:
All compounds that dissolve in water are electrolytes.
All compounds that dissolve in water do not conduct electricity for example the sugar dissolves in water but the solution does not conduct electricity. Thus, for a solution to conduct electricity the dissociation of ions from the substance should takes place which result in the conduction of electricity.
Want to see more full solutions like this?
Chapter 6 Solutions
Introduction to General, Organic and Biochemistry
- Using reaction free energy to predict equilibrium composition Consider the following equilibrium: 2NO2 (g) = N2O4(g) AGº = -5.4 kJ Now suppose a reaction vessel is filled with 4.53 atm of dinitrogen tetroxide (N2O4) at 279. °C. Answer the following questions about this system: Under these conditions, will the pressure of N2O4 tend to rise or fall? Is it possible to reverse this tendency by adding NO2? In other words, if you said the pressure of N2O4 will tend to rise, can that be changed to a tendency to fall by adding NO2? Similarly, if you said the pressure of N2O4 will tend to fall, can that be changed to a tendency to '2' rise by adding NO2? If you said the tendency can be reversed in the second question, calculate the minimum pressure of NO 2 needed to reverse it. Round your answer to 2 significant digits. 00 rise ☐ x10 fall yes no ☐ atm G Ar 1arrow_forwardWhy do we analyse salt?arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. H H CH3OH, H+ H Select to Add Arrows H° 0:0 'H + Q HH ■ Select to Add Arrows CH3OH, H* H. H CH3OH, H+ HH ■ Select to Add Arrows i Please select a drawing or reagent from the question areaarrow_forward
- What are examples of analytical methods that can be used to analyse salt in tomato sauce?arrow_forwardA common alkene starting material is shown below. Predict the major product for each reaction. Use a dash or wedge bond to indicate the relative stereochemistry of substituents on asymmetric centers, where applicable. Ignore any inorganic byproducts H Šali OH H OH Select to Edit Select to Draw 1. BH3-THF 1. Hg(OAc)2, H2O =U= 2. H2O2, NaOH 2. NaBH4, NaOH + Please select a drawing or reagent from the question areaarrow_forwardWhat is the MOHR titration & AOAC method? What is it and how does it work? How can it be used to quantify salt in a sample?arrow_forward
- Predict the major products of this reaction. Cl₂ hv ? Draw only the major product or products in the drawing area below. If there's more than one major product, you can draw them in any arrangement you like. Be sure you use wedge and dash bonds if necessary, for example to distinguish between major products with different stereochemistry. If there will be no products because there will be no significant reaction, just check the box under the drawing area and leave it blank. Note for advanced students: you can ignore any products of repeated addition. Explanation Check Click and drag to start drawing a structure. 80 10 m 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibility DII A F1 F2 F3 F4 F5 F6 F7 F8 EO F11arrow_forwardGiven a system with an anodic overpotential, the variation of η as a function of current density- at low fields is linear.- at higher fields, it follows Tafel's law.Calculate the range of current densities for which the overpotential has the same value when calculated for both cases (the maximum relative difference will be 5%, compared to the behavior for higher fields).arrow_forwardUsing reaction free energy to predict equilibrium composition Consider the following equilibrium: N2 (g) + 3H2 (g) = 2NH3 (g) AGº = -34. KJ Now suppose a reaction vessel is filled with 8.06 atm of nitrogen (N2) and 2.58 atm of ammonia (NH3) at 106. °C. Answer the following questions about this system: rise Under these conditions, will the pressure of N2 tend to rise or fall? ☐ x10 fall Is it possible to reverse this tendency by adding H₂? In other words, if you said the pressure of N2 will tend to rise, can that be changed to a tendency to fall by adding H2? Similarly, if you said the pressure of N will tend to fall, can that be changed to a tendency to rise by adding H₂? If you said the tendency can be reversed in the second question, calculate the minimum pressure of H₂ needed to reverse it. Round your answer to 2 significant digits. yes no ☐ atm Х ด ? olo 18 Ararrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning





