Concept explainers
(a)
The maximum and minimum terminal speed for the skydivers.
(a)
Answer to Problem 39PQ
The maximum and minimum terminal speed of the skydivers are given below.
skydiver | Weight (N) | Length (m) | Radius (m) | Maximum (m/s) | Minimum (m/s) |
A | |||||
B | |||||
C |
Explanation of Solution
Write the formula for the terminal velocity of an object.
Here,
When the skydiver is pointing head down, the terminal velocity is maximum. The
Re-write the equation (I) for maximum terminal speed.
Here,
When the skydiver is pointing belly to earth, the terminal velocity is minimum. The
Re-write the equation (I) for minimum terminal speed.
Here,
Conclusion:
Substitute
Substitute
Similarly the maximum and minimum terminal speed of the skydiver B and C can be calculated.
The table below shows the maximum and minimum terminal velocity of the all three skydivers.
skydiver | Weight (N) | Length (m) | Radius (m) | Maximum (m/s) | Minimum (m/s) |
A | |||||
B | |||||
C |
(b)
The order in which the skydivers should leave the plane in order to form the formation.
(b)
Answer to Problem 39PQ
The order that should be followed to make the formation is C, B, A.
Explanation of Solution
To form the formation of the figure 6.1 all the divers at some point should reach together. Since the diver C has the lowest terminal speed, he should leave the plane first followed by diver B and last diver A.
In the order C, B and A, the divers B and A can initially travel head down to reach to the next divers. Then they can face the belly to down.
Conclusion:
The order that should be followed to make the formation is C, B, A.
(c)
The time that the first skydiver has to wait after jumping to join the formation. The change in waiting time for the first skydiver to join formation if it takes
(c)
Answer to Problem 39PQ
The time that the first skydiver has to wait after jumping to join the formation is
Explanation of Solution
The total wait time for the first skydiver is the total time required for the formation. It is equal to the time taken for the jump of skydiver B and A, then the time taken by the skydiver A to catch up with the skydiver C or the wait time for diver A.
The time gap between the divers to leave the plane is
Write the formula for the distance travelled by skydiver A.
Here,
Write the formula for the distance travelled by the skydiver C.
Here,
Since both the divers travel the same distance.
Re-write the above equation to get an equation for
Conclusion:
Substitute
Thus the total wait time for first skydiver is
If it takes if
Want to see more full solutions like this?
Chapter 6 Solutions
Physics For Scientists And Engineers: Foundations And Connections, Extended Version With Modern Physics
- A sky diver of mass 90 kg (with suit and gear) is falling at terminal speed. What is the upward force of air drag, and how do you know?arrow_forwardA car is traveling at top speed on the Bonneville salt flats while attempting a land speed record. The tires exert 25 kN of force in the backward direction on the ground. Why backwards? How large are the forces resisting the forward motion of the car, and why?arrow_forwardA bee strikes a windshield of a car on the freeway and gets crushed. What can you conclude about the force on the bee versus the force on the windshield, and on what principle is this based?arrow_forward
- Please help by: Use a free body diagram Show the equations State your assumptions Show your steps Box your final answer Thanks!arrow_forwardBy please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardA collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forward
- A number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q(upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forwardFor each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=arrow_forwardFour point charges of equal magnitude Q = 55 nC are placed on the corners of a rectangle of sides D1 = 27 cm and D2 = 11cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Use a coordinate system where the positive y-direction is up and the positive x-direction is to the right. A. Which of the following represents a free-body diagram for the charge on the lower left hand corner of the rectangle? B. Calculate the horizontal component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fx = __________________________________________NC. Calculate the vertical component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fy = __________________________________________ND. Calculate the magnitude of the…arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Classical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning