Concept explainers
Convert the strength of selected materials from MPa to ksi.

Answer to Problem 35P
The conversion for the strength of selected materials given in accompanying table from MPa to ksi as follows:
Material | Ultimate strength (MPa) | Ultimate strength (ksi) |
Aluminum alloys | ||
Concrete (compression) |
|
|
Stee1 | ||
Machine | ||
Spring | ||
Stainless | ||
Tool | ||
Structural Steel | ||
Titanium alloys | ||
Wood (Bending) | ||
Douglas fir | ||
Oak | ||
Southern pine |
Explanation of Solution
Given data:
Refer to Problem 6.35 in textbook for the accompanying table.
Formula used:
Convert N to lbf,
Convert meter to foot,
Convert foot to inches,
Calculation:
Rearrange the equation (1) for conversion of unit as follows,
Case 1:
For Aluminum alloys:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Aluminum alloys:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
Case 2:
For Concrete (compression):
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Concrete (compression):
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
Case 3:
For Steel-Machine:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Machine:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Spring:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Spring:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Stainless:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Stainless:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Tool:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Structural Steel:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Structural Steel:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Titanium alloys:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Steel-Titanium alloys:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
Case 4:
For Wood (Bending)-Douglas fir:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Wood (Bending)-Douglas fir:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Wood (Bending)-Oak:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Wood (Bending)-Oak:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Wood (Bending)-Southern pine:
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
For Wood (Bending)-Southern pine;
Substitute the unit
Substitute the units
Substitute the unit
Substitute the unit
Thus, the conversion for the strength of selected materials from MPa to ksi is tabulated in Table 1.
Table 1
Material | Ultimate strength (MPa) | Ultimate strength (ksi) |
Aluminum alloys | ||
Concrete (compression) |
|
|
Stee1 | ||
Machine | ||
Spring | ||
Stainless | ||
Tool | ||
Structural Steel | ||
Titanium alloys | ||
Wood (Bending) | ||
Douglas fir | ||
Oak | ||
Southern pine |
Conclusion:
Hence, the conversion for the strength of selected materials from MPa to ksi has been explained.
Want to see more full solutions like this?
Chapter 6 Solutions
EBK ENGINEERING FUNDAMENTALS: AN INTROD
- Calculate ALL nodal displacements and ALL the member forces in the truss. Please use the ID's noted in the truss diagramarrow_forwardQ3. In a water flood operation in reservoir A, water is being distributed to severalinjection wells from a common injection system; that is, water is supplied to all thewells at approximately the same well head pressure. Routine measurement of theindividual well injection rates by the team of field operators showed that one well wasreceiving approximately 45% more than its neighbours. The sum of the kh productsfor all of the injection wells were approximately the same depth. As a member of theteam, explain:What are the possible causes of the abnormally high injection rate in this well, andwhat production logs or other tests might be run to further diagnose the problem andplan remedial action?arrow_forwardQuestion 1 20 pts Test data on the bending strength of construction wood poles of various diameter are presented below assuming the same length. Kip- 1000 lbf. Using the following data with 2nd order Newton polynomial interpolation, we want to determine the strength of the material for x=4.5 in. Which data point will be used as x? After you found x0, enter the value of x-xo in the solution. Answer shall be in one decimal place. Distance (in) 2.6 1.5 8.3 2.8 5.7 Strength (kips) 100 200 300 400 500arrow_forward
- Solve pleasearrow_forwardsolve all of the last names from A-K to please for example use k=100k/in , m =1000lb/g . use el centro (2nd picture ) to solve the questions. Thank you for your help! for the following questions ignore that last name and just solve it pleae: Verify the modes that are orthogonal Normalize the first mode uisng electro with 2%damping, Determine Sa&Sd only for the first modearrow_forwardFor question 2 do 2% please. Use El centro spectrum to answer the secon question please. Thank you for your help!arrow_forward
- solve pleasearrow_forwardA mechanism for pushing small boxes from an assembly line onto a conveyor belt is shown with arm OD and crank CB in their vertical positions. For the configuration shown, crank CB has a constant clockwise angular velocity of 0.6π rad/s. Determine the acceleration QE of E (positive if to the right, negative if down). 450 mm 215 mm 565 mm A 185 mm 105 mm 110185. mm mm Answer: a = i B 40 mm E m/s²arrow_forwardPlease answer the following questions in the picture, use the second picture to answer some of the questions. I appreciate your help! Explain step by step, thank you!arrow_forward
- Question 5. Three pipes A, B, and C are interconnected as in Fig. 2. The pipe characteristics are given below. Find the rate at which water will flow in each pipe. Find also the pressure at point P. (Neglect minor losses) Pipe D (in) L (ft) f A 6 2000 0.020 B 4 1600 0.032 C 8 3000 0.02 -El. 200 ft P -El. 120 ft B Fig. 2 -El. 50 ft.arrow_forwardcalculate all nodal displacementts and all the member forces of the trussarrow_forwardNOTE: Use areal methods only for V,M,N diagrams(Do NOT use the equations) (also draw the N diagram(s) for the entire structure)arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningSolid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,Construction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningFundamentals Of Construction EstimatingCivil EngineeringISBN:9781337399395Author:Pratt, David J.Publisher:Cengage,Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning





