Universe: Stars And Galaxies
6th Edition
ISBN: 9781319115098
Author: Roger Freedman, Robert Geller, William J. Kaufmann
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 29Q
To determine
Whether or not, the distance between the blue absorption lines and red absorption line depends on the width of the astronomical object being observed.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Answer in 3-5 sentences.
1. Relate the frequency of peak spectral power density of stars to their visible
colors.
2. Demonstrate or describe Wein’s Displacement Law numerically and graphically
kindly solve on paper and send
Cas A SNR North Lobe
Chandra ACIS image
(M. Stage)
region of spectrum->
104
km/s (be sure to convert your answer to kilometers!)
(Enter a positive value--if you get a negative answer ignore the minus sign.)
1000
100
Combine counts / Ang./ (0.964324 sq. arcsec)
10
0.1
Cas A Ms Spectrum from 4362.5 4458.5, region size 0.964324 sq. arcsec
Mapangh
5
Silicon line
10
20
Wavelength (Angstroms)
The speed of the material ejected in a supernova can be measured by using the Doppler shift of the X-ray emission lines in its spectrum. The images above show real X ray data of the Cassiopeia A supernova remnant and a spectrum extracted from that data--you can see several emission lines
including the silicon line near 6.6 angstroms (0.66 nm).
If the emission line created by silicon normally has a wavelength of 0.6648 nm (nanometers), but is measured in the spectrum to have a wavelength of 0.6611 nm, how fast is the gas moving?
Chapter 6 Solutions
Universe: Stars And Galaxies
Ch. 6 - Prob. 1QCh. 6 - Prob. 2QCh. 6 - Prob. 3QCh. 6 - Prob. 4QCh. 6 - Prob. 5QCh. 6 - Prob. 6QCh. 6 - Prob. 7QCh. 6 - Prob. 8QCh. 6 - Prob. 9QCh. 6 - Prob. 10Q
Ch. 6 - Prob. 11QCh. 6 - Prob. 12QCh. 6 - Prob. 13QCh. 6 - Prob. 14QCh. 6 - Prob. 15QCh. 6 - Prob. 16QCh. 6 - Prob. 17QCh. 6 - Prob. 18QCh. 6 - Prob. 19QCh. 6 - Prob. 20QCh. 6 - Prob. 21QCh. 6 - Prob. 22QCh. 6 - Prob. 23QCh. 6 - Prob. 24QCh. 6 - Prob. 25QCh. 6 - Prob. 26QCh. 6 - Prob. 27QCh. 6 - Prob. 28QCh. 6 - Prob. 29QCh. 6 - Prob. 30QCh. 6 - Prob. 31QCh. 6 - Prob. 32QCh. 6 - Prob. 33QCh. 6 - Prob. 34QCh. 6 - Prob. 35QCh. 6 - Prob. 36QCh. 6 - Prob. 37QCh. 6 - Prob. 38QCh. 6 - Prob. 39QCh. 6 - Prob. 40QCh. 6 - Prob. 41QCh. 6 - Prob. 42QCh. 6 - Prob. 43QCh. 6 - Prob. 44QCh. 6 - Prob. 45Q
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- a) To which object corresponds this spectrum to? b) What is the source of radiation for each of the two humps? c) Why does the hump on the right hand side peak at higher wavelength than the hump on the left? [Specifically, what does this tell you about the temperature for each object that the light originates from?]arrow_forwardHey! Please solve this accurate and exact please please it's my important question, otherwise I'll not thumbs up. Ok thanks.arrow_forwardWhat do the split spectra always comprise of? Why is this?arrow_forward
- What range of values for the introduced variable covers the rod?arrow_forwardIn general, does a telescope resolve a close double star, such as in Figure 6-9b, better at blue wavelengths or red? How do you know?arrow_forwardA)The star 58 Eridani is a feint but naked-eye star similar to the Sun. Suppose that you are observing this star in the night sky without a telescope. Ignoring any interstellar extinction or atmospheric absorption, approximately how many photons per second arrive at your retina? Show all steps in calculation . B) The Mid-infared Instrument (MIRI , camera and spectrograph ) on the James Webb Space Telescope operates in the band 5-28 µm . For 58 Eridani , approximatley how many photons per second can be used by this instrument ? Assume that MIRI takes all the photons from the full JWST mirror . Show all steps in calcultation . Describe breifly two or three other factors which play a role in determining the sensetivitu of an instrument such as MIRI ?arrow_forward
- Biprism experiment D Im, d - 0.1 cM and band width (0.058 cm, calculate wavelength of light used.arrow_forwardHey! Please solve this accurate and exact please please it's my important question,I'll give thumbs up if it's accurate thanks.arrow_forwarda) The star 58 Eridani is a feint but naked-eye star similar to the Sun. Suppose that you are observing this star in the night sky without a telescope. Ignoring any interstellar extinction or atmospheric absorption, approximately how many photons per second arrive at your retina? Show all steps in your calculation. Look up any required information about the star using Wikipedia. Use sensible approximations so your calculation is straightforward. For example you could consider only the region of the spectrum where the photon flux peaks. b) The Mid-Infrared Instrument (MIRI, camera and spectrograph) on the James Webb Space Telescope operates in the band 5 – 28 µm. For 58 Eridani, approximately how many photons per second can be used by this instrument? Assume that MIRI takes all the photons from the full JWST mirror. Show all steps in your calculation. Describe briefly two or three other factors which play a role in determining the sensitivity of an instrument such as MIRI?arrow_forward
- Please do not give solution in image formate thanku If a star has a Doppler velocity of-4500km/s what is the measurement of the special line for H- alpha (Ha) if the rest value of the wavelength of H-alpha is 656.3 nm.?arrow_forwardIn order to observe emissions from celestial bodies Very Long Baseline Arrays (VLBA) have been developed. Explain why VLBA use multiple telescopes separated by long distances in terms of the wave nature of light. Include in your answer specific physics terminology, associated relevant equations, and a labelled diagram.arrow_forwardAnalyze the multi-wavelength images below and describe what you see. Answer the followingquestions:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningStars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning