
Concept explainers
To write:
A menu-driven program to investigate the constant

Answer to Problem 29E
Solution:
The script file is,
clc
clear all
close all
% MATLAB code to calcualte the value of pi by different options.
%script file.
select = menu('select a option for pi', 'Machin''s formula', 'Leibniz''s formula:n-terms','Leibniz''s formula:good approximation','Exit');
%select the different options in menu.
while select == 0
disp('not valid! please choose one of the choices')
select = menu('select a option for pi', 'Machin''s formula', 'Leibniz''s formula:n-terms','Leibniz''s formula:good approximation','Exit');
end
end
% end of function
%The script file should be placed in the same folder.
The script file is,
% MATLAB code to calcualte the value of pi by Machinformula.
%script file.
function machinformula
pivalues = 4*(4*atan(1/5)-atan(1/239));
%define the variable pivalues.
fprintf('the value of pi using Machin''s formula is%.4f\n', pivalues)
%print the value of pi.
end
% end of function
%The script file should be placed in the same folder.
The script file is,
% MATLAB code to get the value of integer.
%script file.
function out = valuen
out = input('A positive integer for n is entered:');
%the value of positive integer is entered.
while out˜= int32(out)||out<=0
out = input('not valid! A posiytive integer for n is entered:');
end
end
% end of function
%The script file should be placed in the same folder.
The script file is,
% MATLAB code to calcualte the value of pi by leibniz's formula for the specific terms.
%script file.
function leibn
out = valuen;
numerat = -4.*cumprod(-ones(1, out));
%define the variable numerat as numerator.
denomina = 1:2:2*out;
%define the variable denomina as denominator.
pievalues = sum((numerat)./(denomina));
fprintf('the approximation of Leibniz for pi with %d terms is %.4f\n', out, pievalues);
%print the value of pi.
end
% end of function
%The script file should be placed in the same folder.
The script file is,
% MATLAB code to calcualte the value of pi by leibniz's formula till the good apprroxiamtion is found..
%script file
function leibgood
error = 0.01;
N = 1;
S = 2;
runsum = 0;
difference = 1;
while error < difference
term = (-1)^S*4/N;
temp = runsum;
runsum = runsum + term;
difference = abs(temp-runsum);
N = N+2;
S = S+1;
end
fprintf('An approximation of pi using Leibniz ''series within %.2f is %.2f\n', error, runsum)
%print the value of pi.
end
% end of function
%The script file should be placed in the same folder.
The main script file is,
% MATLAB code to calcualte the value of pi.
%script file.
select = -1;
while select ˜= 4
select = pivalues;
switch select
%select the different options to get the value of pi.
case 1
machinformula
case 2
leibn
case 3
leibgood
end
end
% end of function
%The script file should be placed in the same folder.
Explanation of Solution
Machin’s formula is given as,
Leibniz’s formula is given as,
The approximation till the fourth term is given as,
MATLAB Code:
% MATLAB code to calcualte the value of pi by different options.
%script file.
function select = pivalues
select = menu('select a option for pi', 'Machin''s formula', 'Leibniz''s formula:n-terms','Leibniz''s formula:good approximation','Exit');
%select the different options in menu.
while select == 0
disp('not valid! please choose one of the choices')
select = menu('select a option for pi', 'Machin''s formula', 'Leibniz''s formula:n-terms','Leibniz''s formula:good approximation','Exit');
end
end
% end of function
%The script file should be placed in the same folder.
% MATLAB code to calcualte the value of pi by Machinformula.
%script file.
function machinformula
pivalues = 4*(4*atan(1/5)-atan(1/239));
%define the variable pivalues.
fprintf('the value of pi using Machin''s formula is%.4f\n', pivalues)
%print the value of pi.
end
% end of function
%The script file should be placed in the same folder.
% MATLAB code to get the value of integer.
%script file.
function out = valuen
out = input('A positive integer for n is entered:');
%the value of positive integer is entered.
while out˜= int32(out)||out<=0
out = input('not valid! A posiytive integer for n is entered:');
end
end
% end of function
%The script file should be placed in the same folder.
% MATLAB code to calcualte the value of pi by leibniz's formula for the specific terms.
%script file.
function leibn
out = valuen;
numerat = -4.*cumprod(-ones(1, out));
%define the variable numerat as numerator.
denomina = 1:2:2*out;
%define the variable denomina as denominator.
pievalues = sum((numerat)./(denomina));
fprintf('the approximation of Leibniz for pi with %d terms is %.4f\n', out, pievalues);
%print the value of pi.
end
% end of function
%The script file should be placed in the same folder.
% MATLAB code to calcualte the value of pi by leibniz's formula till the good apprroxiamtion is found..
%script file
function leibgood
error = 0.01;
N = 1;
S = 2;
runsum = 0;
difference = 1;
while error < difference
term = (-1)^S*4/N;
temp = runsum;
runsum = runsum + term;
difference = abs(temp-runsum);
N = N+2;
S = S+1;
end
fprintf('An approximation of pi using Leibniz ''series within %.2f is %.2f\n', error, runsum)
%print the value of pi.
end
% end of function
%The script file should be placed in the same folder.
% MATLAB code to calcualte the value of pi.
%script file.
select = -1;
while select ˜= 4
select = pivalues;
switch select
%select the different options to get the value of pi.
case 1
machinformula
case 2
leibn
case 3
leibgood
end
end
% end of function
%The script file should be placed in the same folder.
Save the MATLAB scripts with names, pivalues.m, machinformula.m, valuen.m, leibn.m, leibgood.m and main.m in the current folder. Execute the script by typing the script name at the command window to generate result.
Result:
The results is,
Therefore, the result and script files are stated above.
Want to see more full solutions like this?
Chapter 6 Solutions
MATLAB: A Practical Introduction to Programming and Problem Solving
- The following data represent total ventilation measured in liters of air per minute per square meter of body area for two independent (and randomly chosen) samples. Analyze these data using the appropriate non-parametric hypothesis testarrow_forwardeach column represents before & after measurements on the same individual. Analyze with the appropriate non-parametric hypothesis test for a paired design.arrow_forwardShould you be confident in applying your regression equation to estimate the heart rate of a python at 35°C? Why or why not?arrow_forward
- Given your fitted regression line, what would be the residual for snake #5 (10 C)?arrow_forwardCalculate the 95% confidence interval around your estimate of r using Fisher’s z-transformation. In your final answer, make sure to back-transform to the original units.arrow_forwardCalculate Pearson’s correlation coefficient (r) between temperature and heart rate.arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageMathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Elementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice University
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill




