Concept explainers
(a)
Find the outdoor-indoor temperature difference in degrees Fahrenheit.
(a)

Answer to Problem 20P
The outdoor-indoor temperature difference is
Explanation of Solution
Given data:
The inside room temperature
The outside air temperature
Calculation:
The difference between the outdoor-indoor temperatures is,
Substitute
Thus, the outdoor-indoor temperature difference is
Conclusion:
Hence, the outdoor-indoor temperature difference is
(b)
Find the outdoor-indoor temperature difference in degrees Rankine.
(b)

Answer to Problem 20P
The outdoor-indoor temperature difference is
Explanation of Solution
Given data:
The inside room temperature
The outside air temperature
Formula used:
Formula to calculate the outdoor temperature in degrees Rankine is,
Here,
Formula to calculate the indoor temperature in degrees Rankine is,
Here,
Calculation:
Substitute
The outside temperature is
Substitute
The inside temperature is
Substitute
Thus, the outdoor-indoor temperature difference is
Conclusion:
Hence, the outdoor-indoor temperature difference is
(c)
Find the outdoor-indoor temperature difference in degrees Celsius.
(c)

Answer to Problem 20P
The outdoor-indoor temperature difference is
Explanation of Solution
Given data:
The inside room temperature
The outside air temperature
Formula used:
Formula to calculate the outdoor temperature in degrees Celsius is,
Here,
Formula to calculate the indoor temperature in degrees Celsius is,
Here,
Calculation:
Substitute
The outside temperature is
Substitute
The inside temperature is
Substitute
Thus, the outdoor-indoor temperature difference is
Conclusion:
Hence, the outdoor-indoor temperature difference is
(d)
Find the outdoor-indoor temperature difference in Kelvin.
(d)

Answer to Problem 20P
The outdoor-indoor temperature difference is
Explanation of Solution
Given data:
The inside room temperature
The outside air temperature
Formula used:
Formula to calculate the outdoor temperature in Kelvin is,
Here,
Formula to calculate the indoor temperature in Kelvin is,
Here,
Calculation:
Refer from part (c),
The inside room temperature
The outside air temperature
Substitute
The outside temperature is
Substitute
The inside temperature is
Substitute
Thus, the outdoor-indoor temperature difference is
Conclusion:
Hence, the outdoor-indoor temperature difference is
(e)
Check whether one degree temperature difference in Celsius equal to one temperature difference in kelvin, and one degree temperature in Fahrenheit equal to one degree temperature difference in Rankine.
(e)

Explanation of Solution
Case 1:
Refer to part (c),
The outdoor-indoor temperature difference is
Refer to part (d),
The outdoor-indoor temperature difference is
From part (c) and part (d), outdoor-indoor temperature differences are equal.
Note:
Let the temperature difference in Kelvin is,
Formula to calculate the temperature in degree Celsius is,
Here,
Substitute
Thus, one degree temperature difference in Celsius is equal to one temperature difference in kelvin.
Case 2:
Refer to part (a),
The outdoor-indoor temperature difference is
Refer to part (b),
The outdoor-indoor temperature difference is
From part (a) and part (b), outdoor-indoor temperature differences are equal.
Note:
Let the temperature difference in Rankine is,
Formula to calculate the temperature in Rankine is,
Here,
Substitute
Therefore, one degree temperature in Fahrenheit is equal to one degree temperature difference in Rankine.
Conclusion:
Hence, one degree temperature difference in Celsius equal to one temperature difference in kelvin, and one degree temperature in Fahrenheit equal to one degree temperature difference in Rankine has been explained.
Want to see more full solutions like this?
Chapter 6 Solutions
EP WEBASSIGN FOR MOAVENI'S ENGINEERING
- A W14 x 82 with 20 ft length column is part of a braced frame. The load and moments computed from service loads, and bending is about the x axis are (axial compressive dead load of 63 k; axial compressive live load of 76 k; upper dead moment of 32 ft-k; upper live moment of 56 ft-k; lower dead moment of 65 ft-k; lower live moment of 95 ft-k; the moments cause the member to bend in double curvature). Determine the lateral-torsional buckling modification factor C₁. ial live load ofarrow_forwardPROBLEM 1 Find the reaction at A and F. Compute for the force in members AB, BD, and DF. Use Method of Joints OR Method of Sections OR both. 3m B D C E 3m 100KN 3m 4marrow_forwardI need detailed help solving this exercise from homework of Engineering Mathematics II.I do not really understand how to do, please do it step by step, not that long but clear. Thank you!P.S.: Please do not use AI, thanks!arrow_forward
- I need detailed help solving this exercise from homework of Engineering Mathematics II.I do not really understand how to do, please do it step by step, not that long but clear. Thank you!P.S.: Please do not use AI, thanks!arrow_forwardI need detailed help solving this exercise from homework of Engineering Mathematics II.I do not really understand how to do, please do it step by step, not that long but clear. Thank you!P.S.: Please do not use AI, thanks!arrow_forwardI need detailed help solving this exercise from homework of Engineering Mathematics II.I do not really understand how to do, please do it step by step, not that long but clear. Thank you!P.S.: Please do not use AI, thanks!arrow_forward
- I need detailed help solving this exercise from homework of Engineering Mathematics II.I do not really understand how to do, please do it step by step, not that long but clear. Thank you!P.S.: Please do not use AI, thanks!arrow_forwardI need detailed help solving this exercise from homework of Engineering Mathematics II.I do not really understand how to do, please do it step by step, not that long but clear. Thank you!P.S.: Please do not use AI, thanks!arrow_forwardI need detailed help solving this exercise from homework of Engineering Mathematics II.I do not really understand how to do, please do it step by step, not that long but clear. Thank you!P.S.: Please do not use AI, thanks!arrow_forward
- I need detailed help solving this exercise from homework of Engineering Mathematics II.I do not really understand how to do, please do it step by step, not that long but clear. Thank you!P.S.: Please do not use AI, thanks!arrow_forwardI need detailed help solving this exercise from homework of Engineering Mathematics II.I do not really understand how to do, please do it step by step, not that long but clear. Thank you!P.S.: Please do not use AI, thanks!arrow_forwardI need detailed help solving this exercise from homework of Engineering Mathematics II.I do not really understand how to do, please do it step by step, not that long but clear. Thank you!P.S.: Please do not use AI, thanks!arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningConstruction Materials, Methods and Techniques (M...Civil EngineeringISBN:9781305086272Author:William P. Spence, Eva KultermannPublisher:Cengage Learning
- Solid Waste EngineeringCivil EngineeringISBN:9781305635203Author:Worrell, William A.Publisher:Cengage Learning,Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage LearningResidential Construction Academy: House Wiring (M...Civil EngineeringISBN:9781285852225Author:Gregory W FletcherPublisher:Cengage Learning





