
Review Question 6.1 When you burn a log in a fire pit, the mass of wood clearly decreases. How can you define the system so that the mass of the objects in that system remains constant?

The system in which the mass of objects remains constant when a log is burnt in a fire pit and the mass of wood decreases.
Answer to Problem 1RQ
Solution:
The required system can be the fire pit and its surrounding in which the total mass is conserved.
Explanation of Solution
Introduction:
Mass is an example of a conserved quantity. A conserved quantity remains constant in an isolated system, but if the system is not isolated, the quantity might change.
Explanation:
When a log of wood is burnt, the amount of mass that remains, is the same but the solid wood from the log gets converted into smoke and soot. If all the smoke and other gaseous products of the reaction are collected and weighed then it would be exactly equal to the weight of the wood burnt, along with the oxygen consumed during the reaction. Thus, the law of conservation of mass and energy holds true.
Consider the system as fire pit and its surrounding. The burnt log will produce gaseous products and will consume oxygen, which it will take in from the surroundings. Also, the ash formed will remain in the ash pit. Thus, the mass of wood does decrease but it forms gaseous products, uses oxygen and forms ash. But the mass for the considered system, that is fire pit and its surrounding, always remains constant.
Conclusion:
The mass of the system, when a log is burnt, considering the firepit and its surrounding as the system, remains constant.
Want to see more full solutions like this?
Chapter 6 Solutions
EBK COLLEGE PHYSICS
Additional Science Textbook Solutions
Chemistry: The Central Science (14th Edition)
Applications and Investigations in Earth Science (9th Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Genetic Analysis: An Integrated Approach (3rd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Organic Chemistry (8th Edition)
- RT = 4.7E-30 18V IT = 2.3E-3A+ 12 38Ω ли 56Ω ли r5 27Ω ли r3 28Ω r4 > 75Ω r6 600 0.343V 75.8A Now figure out how much current in going through the r4 resistor. |4 = unit And then use that current to find the voltage drop across the r resistor. V4 = unitarrow_forward7 Find the volume inside the cone z² = x²+y², above the (x, y) plane, and between the spheres x²+y²+z² = 1 and x² + y²+z² = 4. Hint: use spherical polar coordinates.arrow_forwardганм Two long, straight wires are oriented perpendicular to the page, as shown in the figure(Figure 1). The current in one wire is I₁ = 3.0 A, pointing into the page, and the current in the other wire is 12 4.0 A, pointing out of the page. = Find the magnitude and direction of the net magnetic field at point P. Express your answer using two significant figures. VO ΜΕ ΑΣΦ ? Figure P 5.0 cm 5.0 cm ₁ = 3.0 A 12 = 4.0 A B: μΤ You have already submitted this answer. Enter a new answer. No credit lost. Try again. Submit Previous Answers Request Answer 1 of 1 Part B X Express your answer using two significant figures. ΜΕ ΑΣΦ 0 = 0 ? below the dashed line to the right P You have already submitted this answer. Enter a new answer. No credit lost. Try again.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





