
Concept explainers
Solve each equation and check:

To calculate: The solution of the equation
Answer to Problem 1R
Solution:
The solution of the equation
Explanation of Solution
Given Information:
The provided equation is
Formula used:
Subtraction property:
The resultant equation will be equivalent to the original equation, if the same quantity is subtracted on both sides of the equation.
Division property:
The resultant equation will be equivalent to the original equation, if the same non-zero quantity is divided on both sides of the equation.
Calculation:
Consider the provided equation.
Apply the subtraction property stated above, subtract both sides of the equation by 4.
Apply the division property stated above, divide both sides of the equation by 2.
Check:
Substitute
Which is true.
Hence, the solution of the equation
Want to see more full solutions like this?
Chapter 6 Solutions
Bundle: Elementary Technical Mathematics, Loose-leaf Version, 12th + WebAssign Printed Access Card, Single-Term
- I need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forwardhelp pleasearrow_forwardI need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)arrow_forward
- Good Day, Please assist with this query.arrow_forward3. Consider the following regression model: Yi Bo+B1x1 + = ···· + ßpxip + Єi, i = 1, . . ., n, where are i.i.d. ~ N (0,0²). (i) Give the MLE of ẞ and σ², where ẞ = (Bo, B₁,..., Bp)T. (ii) Derive explicitly the expressions of AIC and BIC for the above linear regression model, based on their general formulae.arrow_forwardHow does the width of prediction intervals for ARMA(p,q) models change as the forecast horizon increases? Grows to infinity at a square root rate Depends on the model parameters Converges to a fixed value Grows to infinity at a linear ratearrow_forward
- Consider the AR(3) model X₁ = 0.6Xt-1 − 0.4Xt-2 +0.1Xt-3. What is the value of the PACF at lag 2? 0.6 Not enough information None of these values 0.1 -0.4 이arrow_forwardGiven the correlation coefficient (r-value), determine the strength of the relationship. Defend your answersarrow_forward(10 points) Let f(x, y, z) = ze²²+y². Let E = {(x, y, z) | x² + y² ≤ 4,2 ≤ z ≤ 3}. Calculate the integral f(x, y, z) dv. Earrow_forward
- 1. Find the solution set of In(x) sin(x) ≤ 0, for x = [0,14].arrow_forwardSuppose you are gambling on a roulette wheel. Each time the wheel is spun, the result is one of the outcomes 0, 1, and so on through 36. Of these outcomes, 18 are red, 18 are black, and 1 is green. On each spin you bet $5 that a red outcome will occur and $1 that the green outcome will occur. If red occurs, you win a net $4. (You win $10 from red and nothing from green.) If green occurs, you win a net $24. (You win $30 from green and nothing from red.) If black occurs, you lose everything you bet for a loss of $6. a. Use simulation to generate 1,000 plays from this strategy. Each play should indicate the net amount won or lost. Then, based on these outcomes, calculate a 95% confidence interval for the total net amount won or lost from 1,000 plays of the game. (Round your answers to two decimal places and if your answer is negative value, enter "minus" sign.) I worked out the Upper Limit, but I can't seem to arrive at the correct answer for the Lower Limit. What is the Lower Limit?…arrow_forward4. Consider Chebychev's equation (1 - x²)y" - xy + λy = 0 with boundary conditions y(-1) = 0 and y(1) = 0, where X is a constant. (a) Show that Chebychev's equation can be expressed in Sturm-Liouville form d · (py') + qy + Ary = 0, dx y(1) = 0, y(-1) = 0, where p(x) = (1 = x²) 1/2, q(x) = 0 and r(x) = (1 − x²)-1/2 (b) Show that the eigenfunctions of the Sturm-Liouville equation are extremals of the functional A[y], where A[y] = I[y] J[y]' and I[y] and [y] are defined by - I [y] = √, (my² — qy²) dx and J[y] = [[", ry² dx. Explain briefly how to use this to obtain estimates of the smallest eigenvalue >1. 1 (c) Let k > be a parameter. Explain why the functions y(x) = (1-x²) are suitable 4 trial functions for estimating the smallest eigenvalue. Show that the value of A[y] for these trial functions is 4k2 A[y] = = 4k - 1' and use this to estimate the smallest eigenvalue \1. Hint: L₁ x²(1 − ²)³¹ dr = 1 (1 - x²)³ dx (ẞ > 0). 2ẞarrow_forward
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning

