21st Century Astronomy: The Solar System (Sixth Edition)
6th Edition
ISBN: 9780393691283
Author: Laura Kay; Stacy Palen; George Blumenthal
Publisher: W. W. Norton
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 6, Problem 1QP
To determine
The correct statement about the telescopes having different aperture size.
Expert Solution & Answer

Answer to Problem 1QP
Option (c)
Explanation of Solution
Light gathering power of a telescope is proportional to the square of aperture.
Here,
Conclusion:
The equation shows that higher the aperture size, higher will be the light gathering power. Thus, option (c) is correct.
20 cm telescope will have less gathering power. Thus, option (a) is incorrect.
Image size is not related to aperture size. Thus, option (b) and (d) are incorrect.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Did your experiment results in Data Table 3 verify, to within a reasonable experimental error, the condition of equilibrium of Equation 6: Στanti-clockwise = Στclockwise? Support your response with experimental data.
What does this Σ mean? My results do not show they are equal to each other, what does this mean then, and what does the data show? Thanks!
micro wave.
micro wave.
Chapter 6 Solutions
21st Century Astronomy: The Solar System (Sixth Edition)
Ch. 6.1 - Prob. 6.1ACYUCh. 6.1 - Prob. 6.1BCYUCh. 6.2 - Prob. 6.2CYUCh. 6.3 - Prob. 6.3CYUCh. 6.4 - Prob. 6.4CYUCh. 6.5 - Prob. 6.5CYUCh. 6 - Prob. 1QPCh. 6 - Prob. 2QPCh. 6 - Prob. 3QPCh. 6 - Prob. 4QP
Ch. 6 - Prob. 5QPCh. 6 - Prob. 6QPCh. 6 - Prob. 7QPCh. 6 - Prob. 8QPCh. 6 - Prob. 9QPCh. 6 - Prob. 10QPCh. 6 - Prob. 11QPCh. 6 - Prob. 12QPCh. 6 - Prob. 13QPCh. 6 - Prob. 14QPCh. 6 - Prob. 15QPCh. 6 - Prob. 16QPCh. 6 - Prob. 17QPCh. 6 - Prob. 18QPCh. 6 - Prob. 19QPCh. 6 - Prob. 20QPCh. 6 - Prob. 21QPCh. 6 - Prob. 22QPCh. 6 - Prob. 23QPCh. 6 - Prob. 24QPCh. 6 - Prob. 25QPCh. 6 - Prob. 26QPCh. 6 - Prob. 27QPCh. 6 - Prob. 28QPCh. 6 - Prob. 29QPCh. 6 - Prob. 30QPCh. 6 - Prob. 31QPCh. 6 - Prob. 32QPCh. 6 - Prob. 33QPCh. 6 - Prob. 34QPCh. 6 - Prob. 35QPCh. 6 - Prob. 36QPCh. 6 - Prob. 37QPCh. 6 - Prob. 38QPCh. 6 - Prob. 39QPCh. 6 - Prob. 40QPCh. 6 - Prob. 41QPCh. 6 - Prob. 42QPCh. 6 - Prob. 43QPCh. 6 - Prob. 44QPCh. 6 - Prob. 45QP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- kerjakanarrow_forwardAn object is placed 37.4cm in front of a diverging lens with a focal length of 18.1 cm. Please provide your answers in units of cm if necessary. bookmark_border1.0p3a Find the image distance. Answer Updated 6 days ago Show feedback bookmark_border1.0p3b Is the image real or virtual? Real Virtual Updated 6 days ago Show feedback bookmark_border1.0p3c Suppose the object is brought to a distance of 10.3 cm in front of the lens. Where is the image now with respect to its previous location? (Note: Ensure the sign convention you use is consistent by treating all image distances on the object side of the lens as negative.) Answer Updated 7 minutes ago Show feedback bookmark_border1.0p3d How has the height of the image changed if the object is 84.2 cm tall? Answerarrow_forwardn object is placed 37.4cm in front of a diverging lens with a focal length of 18.1 cm. Please provide your answers in units of cm if necessary. bookmark_border1.0p3a Find the image distance. Answer Updated 6 days ago Show feedback bookmark_border1.0p3b Is the image real or virtual? Real Virtual Updated 6 days ago Show feedback bookmark_border1.0p3c Suppose the object is brought to a distance of 10.3 cm in front of the lens. Where is the image now with respect to its previous location? (Note: Ensure the sign convention you use is consistent by treating all image distances on the object side of the lens as negative.) Answer Updated just now Show feedback bookmark_border1.0p3d How has the height of the image changed if the object is 84.2 cm tall? Answerarrow_forward
- Can you draw a FBD and KD please!arrow_forwardIf a 120- volt circuit feeds four 40-watt fluorescent lamps, what current (in amps) is drawn if the power factor is 0.912 0.33 0.68 1.21 3.3arrow_forwardHow do you draw a diagram of the ruler and mass system in equilibrium identifying the anti-clockwise torque and clockwise torque? How do I calculate the anti-clockwise torque and the clockwise torque of the system with the ruler and the washers, does it come from the data in table 2? Please help, thank you!arrow_forward
- A long, narrow steel rod of length 2.5000 m at 33.5°C is oscillating as a pendulum about a horizontal axis through one end. If the temperature drops to 0°C, what will be the fractional change in its period?arrow_forwardHow long should a pendulum be in order to swing back and forth in 1.6 s?arrow_forwardLECTURE HANDOUT: REFRACTION OF LIGHT I. Review Each of the diagrams at right shows a ray incident on a boundary between two media. Continue each of the rays into the second medium. Using a dashed line, also draw the path that the wave would have taken if it had continued without "bending." Does the ray representing a wave "bend" toward or away from the normal when: the wave speed is smaller in the second medium? ⚫the wave speed is larger in the second medium? Faster medium Slower medium Slower medium Faster medium II. Qualitative applications of refraction A. Place a coin at the bottom of an empty can or cup. Look into the cup at the coin while your partner slowly moves the can away from you until you no longer see the coin. Now, keep your head steady while your partner gently pours water into the cup. 1. Describe your observations. Switch roles with your partner so that you each have a turn. Shown below are cross-sectional diagrams of the cup for when it was empty and when it was…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxHorizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
- Stars and Galaxies (MindTap Course List)PhysicsISBN:9781337399944Author:Michael A. SeedsPublisher:Cengage Learning

Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax

Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning

Stars and Galaxies (MindTap Course List)
Physics
ISBN:9781337399944
Author:Michael A. Seeds
Publisher:Cengage Learning

