Concept explainers
(a)
Time mean speed.
Answer to Problem 1P
The time mean speed is
Explanation of Solution
Given:
Observers stationed at two sections XX and YY, 500 ft apart on a highway, recording the time of vehicles on their arrival as shown in the accompanying table
The total time of observation at XX was 15 sec.
In order to calculate time mean speed, we need to figure out traveling time of each vehicle which is the difference of time taken by a vehicle in travelling from XX to YY section between the two sections.
Calculation:
Vehicles | Section XX | Section YY | Travelling time of vehicle, |
A | | | |
B | | | |
C | | | |
D | | | |
We have the following formula for the time mean speed:
Where,
n is the number of the vehicles passing.
Now, the speed of the individual vehicles is as follows:
Speed of vehicle A:
Speed of vehicle B:
Speed of vehicle C:
Speed of vehicle D:
Now, the time mean speed can be calculated by substituting the values in the following formula:
Conclusion:
Therefore, the time mean speed is
(b)
Space mean speed.
Answer to Problem 1P
The time mean speed is
Explanation of Solution
Given:
Observers stationed at two sections XX and YY, 500 ft apart on a highway, recording the time of vehicles on their arrivalas shown in the accompanying table.
The total time of observation at XX was 15 sec.
Calculation:
We have the following formula for finding out the space mean speed.
Where,
Substitute the values, we have:
Conclusion:
Therefore, the time mean speed is
(c)
Flow at section XX.
Answer to Problem 1P
The flow at section XX is as follows
Explanation of Solution
Given:
Observers stationed at two sections XX and YY, 500 ft apart on a highway, recording the time of vehicles on their arrival as shown in the accompanying table.
The total time of observation at XX was 15 sec.
Calculation:
We have the following formula for finding out the flow at XX section.
Where,
Substitute the values, we have:
Conclusion:
Therefore, the flow at section XX is as follows
Want to see more full solutions like this?
Chapter 6 Solutions
MindTap Engineering for Garber/Hoel's Traffic and Highway Engineering, 5th Edition, [Instant Access], 1 term (6 months)
- P.3.4 A mercury U-tube manometer is used to measure the pressure drop across an orifice in pipe. If the liquid that flowing through the orifice is brine of sp.gr. 1.26 and upstream pressure is 2 psig and the downstream pressure is (10 in Hg) vacuum, find the reading of manometer. Ans. R=394 mm Hgarrow_forwardProject management questionarrow_forwardQ5/B with Explantion plsarrow_forward
- project management question Q5/Barrow_forwardProblem 1: Given: In a given floor system, a 5-in concrete slab supported by T-beams of 24-ft spans, supporting 354 psf live load. The T-beams are spaced 2x4 ft on center, and bw (width of the beam web) = 15 inches. Total T-beam height is 25 inches. f'c = 4,000psi, fy = 60,000psi. Design the T-beam. Show all steps. Sketch your Design. Problem 2: Given: A 25"x25" column is subject to a factored axial load of Pu=1,200 kips, and factored design moment of Mu-354 kips-ft. f'c 4,000psi, fy = 60,000psi. Determine the required steel ratio (p) and ties. Sketch the design. 2.0 0.08 INTERACTION DIAGRAM R4-60.9 fc-4 ksi 1.8 1,- 60 ksi 0.07 Y=0.9 16 1.6 0.06 Kmax 0.05 1.4 f/f, = 0 0.04 00 K₁ = P₁/f'c Ag 1.2 12 0.03 0.25 1.0 10 0.02 0.01 0.8 0.6 0.4 €,= 0.0035 0.2 €,= 0.0050 0.0 h yh 0.50 0.75 1.0. 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 R₁ = P₁e/f'Agharrow_forwardGiven: In a given floor system, a 5-in concrete slab supported by T-beams of 24-ft spans, supporting 354 psf live load. The T-beams are spaced 2x4 ft on center, and bw (width of the beam web) = 15 inches. Total T-beam height is 25 inches. f'c = 4,000psi, fy = 60,000psi. Design the T-beam. Show all steps. Sketch your Design.arrow_forward
- Problem 2: Given: A 25"x25" column is subject to a factored axial load of Pu=1,200 kips, and factored design moment of Mu-354 kips-ft. f'c 4,000psi, fy = 60,000psi. Determine the required steel ratio (p) and ties. Sketch the design. 2.0 P=0.08 INTERACTION DIAGRAM R4-60.9 fc-4 ksi 1.8 1,- 60 ksi 0.07 7=0.9 1.6 16 0.06 Kmax 0.05 1.4 f/f, = 0 0.04 90 K₁ = P₁/f'Ag 1.2 0.03 0.25 0.02 1.0 0.01 0.8 0.6 0.4 €= 0.0035 0.2 €,= 0.0050 0.0 h yh 0.50 0.75 1.0. 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 R₁ = P₁e/f'Aharrow_forwardGiven: A 25"x25" column is subject to a factored axial load of Pu=1,200 kips, and factored design moment of Mu=354 kips-ft. f'c 4,000psi, fy = 60,000psi. Determine the required steel ratio () and ties. Sketch the design.arrow_forwardSee Figure (1) below. A 14 in. wide and 2 in. thick plate subject to tensile loading has staggered holes as shown. Compute An and Ae. P 2.00 3.00 4.00 3.00 2.00 ΕΙ T A B C F G D S = 2.50 3/4" bolts in 13/16" holes 14x12 PL Parrow_forward
- Traffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning