Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
bartleby

Videos

Question
Book Icon
Chapter 6, Problem 1P

(a)

To determine

Whether the statement is true or false.

(a)

Expert Solution
Check Mark

Explanation of Solution

Introduction:

The work energy theorem states that the net or total work done on a particle is equal to the change in its kinetic energy.

According to the work energy theorem, the net or total work done on a particle is equal to the change in its kinetic energy.

Write the expression for the work-energy theorem.

  W = 12(mvf2mvi2)

Here, W is the work done on particle, m is the mass of the particle, vf and vi are the final and initial velocities of the particle respectively.

Conclusion:

Thus, for non-zero work done, the initial and final speeds mustdiffer i.e. there must be a change in speed of the particle. Hence, the given statement is true.

(b)

To determine

Whether the statement is true or false.

(b)

Expert Solution
Check Mark

Explanation of Solution

According to the work energy theorem, the net or total work done on a particle is equal to the change in its kinetic energy.

Write the expression for the work-energy theorem.

  W = 12(mvf2mvi2)

Here, W is the work done on particle, m is the mass of the particle, vf and vi are the final and initial velocities of the particle respectively.

Introduction:The work energy theorem states that the net or total work done on a particle is equal to the change in its kinetic energy.

Conclusion:Thus, for non-zero work done, the initial and final velocities must differ i.e. there must be a change in velocity of the particle. Hence, the given statement is true.

(c)

To determine

Whether the statement is true or false.

(c)

Expert Solution
Check Mark

Explanation of Solution

Introduction:

The work energy theorem states that the net or total work done on a particle is equal to the change in its kinetic energy.

According to the work energy theorem, the net or total work done on a particle is equal to the change in its kinetic energy.

Write the expression for the work-energy theorem.

  W = 12(mvf2mvi2)

Here, W is the work done on particle, m is the mass of the particle, vf and vi are the final and initial velocities of the particle respectively.

For a particle moving in straight line, i.e. its direction of motion is not changing, if its speed changes with time then, the net work done on it will be non-zero while if its speed is constant then, the net work done on it will be zero.

Conclusion:

Thus, for a particle moving in straight line, i.e. its direction of motion is not changing, and its speed changing with time then, the net work done on it will be non-zero. Hence, the given statement is true.

(d)

To determine

Whether the statement is true or false.

(d)

Expert Solution
Check Mark

Explanation of Solution

Introduction:

The work energy theorem states that the net or total work done on a particle is equal to the change in its kinetic energy.

According to the work energy theorem, the net or total work done on a particle is equal to the change in its kinetic energy.

Write the expression for the work-energy theorem.

  W = 12(mvf2mvi2)

Here, W is the work done on particle, m is the mass of the particle, vf and vi are the final and initial velocities of the particle respectively.

For a particle at rest, the speed is zero throughout and thus, work done on it will be zero.

Conclusion:

Thus, for a particle at constant rest, the initial and final velocities of the particle are same and thus work done is zero.

(e)

To determine

Whether the statement is true or false.

(e)

Expert Solution
Check Mark

Explanation of Solution

Introduction:

The work done on a particle is given by the dot product of force acting on it and its displacement.

For a particle experiencing a force in a particular direction and having a displacement, the work done on it is given by the dot product of force acting on it and its displacement.

If the angle between force and displacement is 90 i.e. the force is acting perpendicular to the motion of the particle, the work done on it is always zero.

Conclusion:

Thus, if a force is always perpendicular to the velocity of particle, the angle betweenforce and displacement is 90 and no work is done on the particle. Hence, the given statement is true.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Three slits, each separated from its neighbor by d = 0.06 mm, are illuminated by a coherent light source of wavelength 550 nm. The slits are extremely narrow. A screen is located L = 2.5 m from the slits. The intensity on the centerline is 0.05 W. Consider a location on the screen x = 1.72 cm from the centerline. a) Draw the phasors, according to the phasor model for the addition of harmonic waves, appropriate for this location. b) From the phasor diagram, calculate the intensity of light at this location.
A Jamin interferometer is a device for measuring or for comparing the indices of refraction of gases. A beam of monochromatic light is split into two parts, each of which is directed along the axis of a separate cylindrical tube before being recombined into a single beam that is viewed through a telescope. Suppose we are given the following, • Length of each tube is L = 0.4 m. • λ= 598 nm. Both tubes are initially evacuated, and constructive interference is observed in the center of the field of view. As air is slowly let into one of the tubes, the central field of view changes dark and back to bright a total of 198 times. (a) What is the index of refraction for air? (b) If the fringes can be counted to ±0.25 fringe, where one fringe is equivalent to one complete cycle of intensity variation at the center of the field of view, to what accuracy can the index of refraction of air be determined by this experiment?
1. An arrangement of three charges is shown below where q₁ = 1.6 × 10-19 C, q2 = -1.6×10-19 C, and q3 3.2 x 10-19 C. 2 cm Y 93 92 91 X 3 cm (a) Calculate the magnitude and direction of the net force on q₁. (b) Sketch the direction of the forces on qi
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Text book image
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Mechanical work done (GCSE Physics); Author: Dr de Bruin's Classroom;https://www.youtube.com/watch?v=OapgRhYDMvw;License: Standard YouTube License, CC-BY