(a)
Whether the statement is true or false.
(a)
Explanation of Solution
Introduction:
The work energy theorem states that the net or total work done on a particle is equal to the change in its kinetic energy.
According to the work energy theorem, the net or total work done on a particle is equal to the change in its kinetic energy.
Write the expression for the work-energy theorem.
Here,
Conclusion:
Thus, for non-zero work done, the initial and final speeds mustdiffer i.e. there must be a change in speed of the particle. Hence, the given statement is true.
(b)
Whether the statement is true or false.
(b)
Explanation of Solution
According to the work energy theorem, the net or total work done on a particle is equal to the change in its kinetic energy.
Write the expression for the work-energy theorem.
Here,
Introduction:The work energy theorem states that the net or total work done on a particle is equal to the change in its kinetic energy.
Conclusion:Thus, for non-zero work done, the initial and final velocities must differ i.e. there must be a change in velocity of the particle. Hence, the given statement is true.
(c)
Whether the statement is true or false.
(c)
Explanation of Solution
Introduction:
The work energy theorem states that the net or total work done on a particle is equal to the change in its kinetic energy.
According to the work energy theorem, the net or total work done on a particle is equal to the change in its kinetic energy.
Write the expression for the work-energy theorem.
Here,
For a particle moving in straight line, i.e. its direction of motion is not changing, if its speed changes with time then, the net work done on it will be non-zero while if its speed is constant then, the net work done on it will be zero.
Conclusion:
Thus, for a particle moving in straight line, i.e. its direction of motion is not changing, and its speed changing with time then, the net work done on it will be non-zero. Hence, the given statement is true.
(d)
Whether the statement is true or false.
(d)
Explanation of Solution
Introduction:
The work energy theorem states that the net or total work done on a particle is equal to the change in its kinetic energy.
According to the work energy theorem, the net or total work done on a particle is equal to the change in its kinetic energy.
Write the expression for the work-energy theorem.
Here,
For a particle at rest, the speed is zero throughout and thus, work done on it will be zero.
Conclusion:
Thus, for a particle at constant rest, the initial and final velocities of the particle are same and thus work done is zero.
(e)
Whether the statement is true or false.
(e)
Explanation of Solution
Introduction:
The work done on a particle is given by the dot product of force acting on it and its displacement.
For a particle experiencing a force in a particular direction and having a displacement, the work done on it is given by the dot product of force acting on it and its displacement.
If the angle between force and displacement is
Conclusion:
Thus, if a force is always perpendicular to the velocity of particle, the angle betweenforce and displacement is
Want to see more full solutions like this?
Chapter 6 Solutions
Physics for Scientists and Engineers
- Cite two examples in which a force is exerted on an object without doing any work on the object.arrow_forwardA particle of mass 2.0 kg moves under the influence of the force F(x)=(5x2=7x)N . Suppose a frictional force also acts on the particle. If the particle’s speed when it starts at x=4.0 m is 0.0 m/s and when it arrives at x=4.0 m is 9.0 m/s, how much work is done on it by the frictional force between x=4.0 m and x=4.0 m?arrow_forwardSuppose you are jogging at constant velocity. Are you doing any work on the environment and vice versa?arrow_forward
- Check Your Understanding Find the work done by the same force in Example 7.4 over a cubic path, y=(0.25m-2)x3 , between the same points A=(0,0) and B=(2m,2m) .arrow_forwardSuppose you throw a ball upward and catch it when it returns at the same height. How much work does the gravitational force do on the ball over its entire trip?arrow_forwardA cart is pulled a distance D on a flat, horizontal surface by a constant farce F that acts at an angle with the horizontal direction. The other forces on the object during this time are gravity (Fw) , normal forces (FN1) and (FN2) , and rolling frictions Fr1 and Fr2 , as shown below What is the work done by each force?arrow_forward
- The force F(x) varies with position, as shown beolow Find the work done by this force on a particle as It moves from x=1.0 m to x=5.0 m.arrow_forwardAn electron in a television tube is accelerated uniformly from rest to a speed of 8.4107 m/s over a distance of 2.5 cm. What is the power delivered to the electron at the instant that its displacement is 1.0 cm?arrow_forwardThe surface of the preceding problem is modified so that the coefficient of kinetic friction is decreased. The same horizontal force is applied to the crate, and after being pushed 8.0 m, its speed is 5.0 m/s. How much work is now done by the force of friction? Assume that the crate starts at rest.arrow_forward
- Check Your Understanding The spring Example 7.5 is compressed 6 cm from its equilibrium length. (a) Does the spring force do positive or negative work and (b) what is the magnitude?arrow_forwardRepeat the preceding problem, but this time, suppose that the work done by air resistance cannot be ignored. Let the work done by the air resistance when the skier goes from A to B along the given hilly path be —2000 J. The work done by air resistance is negative since the air resistance acts in the opposite direction to the displacement. Supposing the mass of the skier is 50 kg, what is the speed of the skier at point B ?arrow_forwardCoal is lifted out of a mine a vertical distance of 50 m by an engine that supplies 500 W to a conveyer belt. How much coal per minute can be brought to the surface? Ignore the effects of friction.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning