
Concept explainers
(a)
Rank of the acceleration for the cases.
(a)

Answer to Problem 1OQ
Rank of the acceleration for the cases is
Explanation of Solution
The boy moves with constant velocity around the whole track. The passes through various regions in which some are straight and some are semi circular in shape.
The moment boy reaches circular path it expereinces acceleration force due to
Write the expression for the acceleration of boy.
Here,
Write the acceleration of the boy on straight path.
Here,
The moment boy reaches the straight path and moves with constant velocity.
Substitute
Therefore, acceleration is zero.
Conclusion:
Case (A)
The moment boy reaches point A, the radius of semicircular path is small as compared to point C.
Acceleration is inversely proportional to radius of circular path from equation (I).
Therefore acceleration increases as radius of circular path decreases.
Case (B)
Point B lies on the straight path. On this straight path boy moves with constant velocity.
The velocity does not change with time therefore acceleration becomes zero from equation (III).
Case (C)
Point C lies on the circular path.. This path has large radius as compared to point (A).
The moment boy reaches circular path it experiences acceleration The acceleration is inversely proportional to radius from eqaution (I).
Therefore the acceleration decreases as the radius inscreases.
Case (D)
Point D also lies on the circular path of larger radius . Therefore, boy experiences acceleration force.
The radius of the path is large, therefore acceleration is small from equation (I).
Case (E)
Point E is a straight path. The velocity of boy remains constant with time.
Therefore acceleration becomes zero from equation (III).
Thus, Rank of the acceleration for the cases is
(b)
The direction of velocity of boy at points A,B and C.
(b)

Answer to Problem 1OQ
The direction of velocity of boy at points A,B and C is
Explanation of Solution
Direction of velocity is always in the direction of the motion. The changes his direction of motion with time, hence direction of velocity changes.
Conclusion:
Case (A)
At point A boy moves on a circular track with some constant velocity. The boy moves toward north direction.
Therefore the direction of boy at point A is North.
Case (B)
At point B, boy moves on a straight track having velocity. The boy moves towards west direction.
Therefore the direction of boy at point B is West.
Case (C)
At point C, the motion of boy is on the circular path. On the circular path the direction of velocity is in direction of motion. The boy moves in south direction.
Therefore the direction of boy is South.
Thus, the direction of velocity of boy at points A,B and C is
(c)
The direction of velocity of boy at points A,B and C.
(c)

Answer to Problem 1OQ
The direction of velocity of boy at points A,B and C is
Explanation of Solution
The boy on whole track moves on two types of path, circular and straight path.
The moment the boy moves on circular path , the acceleration becomes perpendicular to the motion of the boy and it is directed towards its center.
The moment boy reaches the straight path the direction of acceleration is in the direction of velocity which is in the direction of motion.
Conclusion:
Case (A)
The boy moves in the circular path at point A. The direction of the velocity is in the north direction.
In circular motion, acceleration on the particle acts perpendicular to the direction of motion.
Therefore the direction of acceleration of the boy whose velocity is in north direction at point A will be in West direction
Case (B)
At point B, the boy moves in straight path. The boy moves with constant velocity. So the acceleration is not present and is zero from equation (III).
Therefore the direction of the acceleration at point b will not be present. The direction of acceleration is nonexistent.
Case (C)
At point C, the boy is in circular path. The direction of velocity of boy is in south direction.
In circular motion, direction of velocity is perpendicular to the direction of velocity.
Therefore, the direction of acceleration of boy having velocity in south direction at point C will have direction of acceleration in East direction.
Thus, the direction of velocity of boy at points A, B and C is
Want to see more full solutions like this?
Chapter 6 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
- 3. If the force of gravity stopped acting on the planets in our solar system, what would happen? a) They would spiral slowly towards the sun. b) They would continue in straight lines tangent to their orbits. c) They would continue to orbit the sun. d) They would fly straight away from the sun. e) They would spiral slowly away from the sun. 4. 1 The free-body diagram of a wagon being pulled along a horizontal surface is best represented by A F N B C 0 Ꭰ FN E a) A b) B c) C app app The app 10 app d) e) ס ח D E 10 apparrow_forwardPls help ASAParrow_forwardPls help asaparrow_forward
- Pls help asaparrow_forwardThe acceleration of an object sliding along a frictionless ramp is inclined at an angle 0 is 9. a) g tano b) g cose c) g sino 10. d) g e) zero A 1.5 kg cart is pulled with a force of 7.3 N at an angle of 40° above the horizontal. If a kinetic friction force of 3.2 N acts against the motion, the cart's acceleration along the horizontal surface will be a) 5.0 m/s² b) 1.6 m/s² c) 2.4 m/s² 11. d) 1.0 m/s² e) 2.7 m/s² What is the net force acting on an object with a mass of 10 kg moving at a constant velocity of 10 m/s [North]? a) 100 N [North] b) 100 N [South] 10 N [North} d) 10 N [South] e) None of these.arrow_forwardModified True/False - indicate whether the sentence or statement is true or false. If the statement is false, correct the statement to make it true. 12. An object in uniform circular motion has a constant velocity while experiencing centripetal acceleration. 13. An object travelling in uniform circular motion experiences an outward centrifugal force that tends to pull the object out of the circular path. 14. An object with less inertia can resist changes in motion more than an object with more inertia. 15. For an object sliding on a horizontal surface with a horizontal applied force, the frictional force will always increase as the applied force increases.arrow_forward
- Pls help asaparrow_forwardAnswer the given question showing step by step by and all necessary working out.arrow_forward1. The piston in the figure has a mass of 0.5 kg. The infinitely long cylinder is pushed upward at a constant velocity. The diameters of the cylinder and piston are 10 cm and 9 cm, respectively, and there is oil between them with v = 10⁻⁴ m^2/s and γ = 8,000 N/m³. At what speed must the cylinder ascend for the piston to remain at rest?arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





