
Decide on the type of problem for each question.
- a. For the meter stick example, tests have been conducted for extensions of 0.2, 0.4, 0.6, and 0.8 meters with loads of 2, 4, 6, and 10 coins and 5 large books in each test. What will the deflection be for 0.5 meters and 8 coins?
- b. If no books are used to hold one end of the beam, what will be the maximum number of coins that can be placed on the tip?
- c. For the meter stick example, we have deflection data for a 0.7 meter extension with 6 coins. What will the deflection be for 3 coins?
- d. For the meter stick example above, will 5 stacked coins placed on the tip yield a greater or smaller deflection than 5 coins placed along the beam only one high?
(a)

Find out the type of problem the given question corresponds.
Answer to Problem 1ICA
The given question corresponds to a parametric problem.
Explanation of Solution
Discussion:
The given question is about a test conducted for a meter stick with the extensions as 0.2 m, 0.4 m, 0.6 m and 0.8 m and with loads as 2,4 6 and 10 coins and 5 large books in each test. In this particular question a range of load and extension values is required.
This can be done in an easier way using spreadsheet along with graph for the range of input values. Therefore this problem can be grouped under the heading parametric.
Conclusion:
Hence, the given question corresponds to a parametric problem.
(b)

Find out the type of problem the given question corresponds.
Answer to Problem 1ICA
The given question can be referred to as a Discussion Problem as well as an Ideal Problem.
Explanation of Solution
Discussion:
In the given question it is required to find out the maximum number of coins that can be placed on the tip. We are required to study about the extension of the bean and it’s mass in comparison to that of coin. This therefore can be referred to as a discussion problem.
Half of the length of the beam should remain on the table or else it would fall off without any coin on the tip. Once the course in statics is completed by the student, the given problem can also be referred to as an ideal problem.
Conclusion:
Hence, the given question can be referred to as a Discussion Problem as well as an Ideal Problem.
(c)

Find out the type of problem the given question corresponds.
Answer to Problem 1ICA
The given question can be referred to as a Ratio.
Explanation of Solution
Discussion:
In the given question we are required to find out the deflection of 3 coins given that the deflection data of 6 coins for a 0.7 m extension is given.
The deflection will be double if the number of coins that is the load is doubled. Similarly if the load will be halved the deflection will be halved. We can infer this even if the governing equation is not known. Therefore in this question we are comparing a quantity with a known quantity therefore it is termed to be a ratio.
Conclusion:
Hence, the given question can be referred to as a Ratio.
(d)

Find out the type of problem the given question corresponds.
Answer to Problem 1ICA
The given question can be referred to as a Discussion.
Explanation of Solution
Discussion:
In the given question we are required to find out whether 5 coins placed on the tip yields greater or smaller deflection than the coins placed along the beam only one high.
If the coins are lined up, we get a distribution load which is more difficult to analyze than a point load this can however be easily understood through discussion as to how the distributed load will produce lesser deflection than the point load at the tip.
Therefore the given question can be inferred to be a discussion.
Conclusion:
Hence, the given question can be referred to as a Discussion.
Want to see more full solutions like this?
Chapter 6 Solutions
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
- You are asked to design a unit to condense ammonia. The required condensation rate is 0.09kg/s. Saturated ammonia at 30 o C is passed over a vertical plate (10 cm high and 25 cm wide).The properties of ammonia at the saturation temperature of 30°C are hfg = 1144 ́10^3 J/kg andrho_v = 9.055 kg/m 3 . Use the properties of liquid ammonia at the film temperature of 20°C (Ts =10 o C):Pr = 1.463 rho_l= 610.2 kf/m^3 liquid viscosity= 1.519*10^-4 kg/ ms kinematic viscosity= 2.489*10^-7 m^2/s Cpl= 4745 J/kg C kl=0.4927 W/m C hfg*=hfg+0.68Cpl(Tsat-Given Ts) a) Instead of one plate you want to use small plates and install many of them. Calculate the requiredsurface temperature to achieve the desired condensation rate (0.09 kg/s) if you install 36vertical plates (with the same dimension as above: 10 cm high and 25 cm wide).arrow_forward11-19 designed in Problem The shaft shown in figure P11-4 was 10-19, for the data in the row(s) assigned from table PII-1, and the corresponding diameter of shaft found in Problem 10-19, design suitable bearings 5 E8 cycles at the load for at least State all assumptions. to support 1200rpm. (a) Using hydrodynamically lubricated bronze sleeve bearings with ON = 40, Lld = 0.8, and clearance ratio 0.0025. of a ← gear T gear Key figure PI-4 Given from the problem 10-19 we get d= 1.153 in from the table 11-1 we get a = 16 in b= 18in L= 20inarrow_forwardIn an irrigation system, the following characteristics of the pipe network are available.• 100 meters of 4" PVC pipe, 3 gate valves• 500 meters of 3" PVC pipe, 4 gate valves• 200 meters of 2" H.G. pipe, 2 globe valves• 50 litres per second circulate in the pipes:Calculate:1. Total energy losses in meters.2. Leaks in pipes.3. Losses in accessories.4. Calculate the equivalent pipe of that system assuming only pipes without fittings.Solve the problem without artificial intelligence, solve by one of the expertsarrow_forward
- In a series pipe, calculate the diameter 2 according to the following:• Ltotal: 325 m• L1: 52 m, D1: 3/4"• L2: 254 m, D2:?• L3: 19 m, D: 1-1/4".Indicate the nominal diameter. Solve without using artificial inteligence, solve by one of the expertsarrow_forwardWhat is the critical speed of the shaft in rad/s for one, two, and three elements?arrow_forward2. Express the following complex numbers in rectangular form. (a) z₁ = 2еjл/6 (b) Z2=-3e-jπ/4 (c) Z3 = √√√3e-j³/4 (d) z4 = − j³arrow_forward
- A prismatic beam is built into a structure. You can consider the boundary conditions at A and B to be fixed supports. The beam was originally designed to withstand a triangular distributed load, however, the loading condition has been revised and can be approximated by a cosine function as shown in the figure below. You have been tasked with analysing the structure. As the beam is prismatic, you can assume that the bending rigidity (El) is constant. wwo cos 2L x A B Figure 3: Built in beam with a varying distributed load In order to do this, you will: a. Solve the reaction forces and moments at point A and B. Hint: you may find it convenient to use the principal of superposition. (2%) b. Plot the shear force and bending moment diagrams and identify the maximum shear force and bending moment. (2%) c. Develop an expression for the vertical deflection. Clearly state your expression in terms of x. (1%)arrow_forwardQuestion 1: Beam Analysis Two beams (ABC and CD) are connected using a pin immediately to the left of Point C. The pin acts as a moment release, i.e. no moments are transferred through this pinned connection. Shear forces can be transferred through the pinned connection. Beam ABC has a pinned support at point A and a roller support at Point C. Beam CD has a roller support at Point D. A concentrated load, P, is applied to the mid span of beam CD, and acts at an angle as shown below. Two concentrated moments, MB and Mc act in the directions shown at Point B and Point C respectively. The magnitude of these moments is PL. Moment Release A B с ° MB = PL Mc= = PL -L/2- -L/2- → P D Figure 1: Two beam arrangement for question 1. To analyse this structure, you will: a) Construct the free body diagrams for the structure shown above. When constructing your FBD's you must make section cuts at point B and C. You can represent the structure as three separate beams. Following this, construct the…arrow_forwardA cantilevered rectangular prismatic beam has three loads applied. 10,000N in the positive x direction, 500N in the positive z direction and 750 in the negative y direction. You have been tasked with analysing the stresses at three points on the beam, a, b and c. 32mm 60mm 24mm 180mm 15mm 15mm 40mm 750N 16mm 500N x 10,000N Figure 2: Idealisation of the structure and the applied loading (right). Photograph of the new product (left). Picture sourced from amazon.com.au. To assess the design, you will: a) Determine state of stress at all points (a, b and c). These points are located on the exterior surface of the beam. Point a is located along the centreline of the beam, point b is 15mm from the centreline and point c is located on the edge of the beam. When calculating the stresses you must consider the stresses due to bending and transverse shear. Present your results in a table and ensure that your sign convention is clearly shown (and applied consistently!) (3%) b) You have identified…arrow_forward
- 7.82 Water flows from the reservoir on the left to the reservoir on the right at a rate of 16 cfs. The formula for the head losses in the pipes is h₁ = 0.02(L/D)(V²/2g). What elevation in the left reservoir is required to produce this flow? Also carefully sketch the HGL and the EGL for the system. Note: Assume the head-loss formula can be used for the smaller pipe as well as for the larger pipe. Assume α = 1.0 at all locations. Elevation = ? 200 ft 300 ft D₁ = 1.128 ft D2=1.596 ft 12 2012 Problem 7.82 Elevation = 110 ftarrow_forwardHomework#5arrow_forwardA closed-cycle gas turbine unit operating with maximum and minimum temperature of 760oC and 20oC has a pressure ratio of 7/1. Calculate the ideal cycle efficiency and the work ratioarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- International Edition---engineering Mechanics: St...Mechanical EngineeringISBN:9781305501607Author:Andrew Pytel And Jaan KiusalaasPublisher:CENGAGE L
