Concept explainers
a.
Find the explanatory variable and response variable to plot a
Find the direction, form and strength of the scatterplot.
a.

Answer to Problem 1E
Either weight in grams or weight in ounces could be the explanatory or response variable.
The association between the variables is straight, positive and strong.
Explanation of Solution
Given info:
The variables of the apples are given one is weight in grams and the other is weight in ounces.
Justification:
Associated variables:
Two variables are associated or related if the value of one variable gives you information about the value of the other variable.
The two variables weight in grams and weight in ounces are associated variables.
Response variable:
The variable to be measured or observed in
Therefore, the dependent variables which is measured by the independent variables is called the response variable.
Here, given two variables are weight in grams of apple and weight in ounces of apple.
That is, each apple’s weight is measured in two different scales.
Therefore, there will be chances for weight in grams to depend on weight in ounces and vice versa.
Thus, either weight in grams or weight in ounces could be the explanatory or response variable.
Explanatory variable:
The variable used to predict or explain the response variable is called as predictor variable or explanatory variable. In other words it can also be defined as, the variable that explains the changes in the response variable is defined as explanatory variable.
Therefore, the independent variables to predict the response variable is called the predictor variable.
Here, given two variables are weight in grams of apple and weight in ounces of apple.
That is, each apple’s weight is measured in two different scales.
Therefore, there will be chances for weight in grams to depend on weight in ounces and vice versa.
Thus, either weight in grams or weight in ounces could be the explanatory or response variable.
Form of the association between variable:
The form of the association describes whether the data points follow a linear pattern or some other complicated curves. For data if it appears that a line would do a reasonable job of summarizing the overall pattern in the data. Then, the association between two variables is linear.
Here, weight in ounces increases or decreases with the increase or decrease in the weight in grams.
The pattern of the relationship between weight in ounces and weight in grams represents a straight line.
Hence, the association between the weight in ounces and weight in grams is linear.
Direction of association:
If the increase in the values of one variable increases the values of another variable, then the direction is positive. If the increase in the values of one variable decreases the values of another variable, then the direction is negative.
Here, weight in ounces increases or decreases with the increase or decrease in the weight in grams.
Hence, the direction of the association is positive.
Strength of the association:
The association is said to be strong if all the points are close to the straight line. It is said to be weak if all points are far away from the straight line and it is said to be moderate if the data points are moderately close to straight line.
Here, the variables will have perfect
Hence, the association between the variables is strong.
b.
Find the explanatory variable and response variable to plot a scatterplot.
Find the direction, form and strength of the scatterplot.
b.

Answer to Problem 1E
Circumference of apple is explanatory variable and weight is the response variable.
The association between the variables is straight, positive and strong.
Explanation of Solution
Given info:
The variables of the apples are given one is circumference in inches and the other is weight in ounces.
Justification:
Associated variables:
Two variables are associated or related if the value of one variable gives you information about the value of the other variable.
The two variables circumference in inches and weight in ounces are associated variables.
Response variable:
The variable to be measured or observed in regression analysis is called as response variable. In other words it can also be defined as, the variable that is changed due to the impact of the explanatory variable is defined as response variable.
Therefore, the dependent variables which is measured by the independent variables is called the response variable.
Here, given two variables are circumference in inches of apple and weight in ounces of apple.
Three dimensional volume is nothing but the weight and one dimensional circumference explains the three dimensional volume.
Therefore, weight of the apple is predicted with the circumference of the apple.
That is, weight of the apple is depend on the circumference of the apple.
Thus, weight in ounces is dependent or response variable.
Explanatory variable:
The variable used to predict or explain the response variable is called as predictor variable or explanatory variable. In other words it can also be defined as, the variable that explains the changes in the response variable is defined as explanatory variable.
Therefore, the independent variables to predict the response variable is called the predictor variable.
Here, given two variables are circumference in inches of apple and weight in ounces of apple.
Weight of the apple is predicted with the circumference of the apple.
Thus, circumference in inches is independent or explanatory variable.
Form of the association between variable:
The form of the association describes whether the data points follow a linear pattern or some other complicated curves. For data if it appears that a line would do a reasonable job of summarizing the overall pattern in the data. Then, the association between two variables is linear.
Here, weight in ounces increases or decreases with the increase or decrease in the circumference in inches of apple.
The pattern of the relationship between weight in ounces and circumference in inches of apple represents a straight line for same size apples.
Hence, the association between the weight in ounces and circumference in inches of apple is linear for same size apples.
The association curve will be apparent if the sample contains very large and very small apples.
Direction of association:
If the increase in the values of one variable increases the values of another variable, then the direction is positive. If the increase in the values of one variable decreases the values of another variable, then the direction is negative.
Here, weight in ounces increases or decreases with the increase or decrease in the circumference in inches of apple.
Hence, the direction of the association is positive.
Strength of the association:
The association is said to be strong if all the points are close to the straight line. It is said to be weak if all points are far away from the straight line and it is said to be moderate if the data points are moderately close to straight line.
Here, the variables will have perfect correlation between them.
Hence, the association between the variables is strong.
c.
Find the explanatory variable and response variable to plot a scatterplot.
Find the direction, form and strength of the scatterplot.
c.

Answer to Problem 1E
The variables shoe size and grade point average are not associated with each other.
Explanation of Solution
Given info:
The variables of the college freshmen are given one is shoe size and the other is grade point average.
Justification:
Associated variables:
Two variables are associated or related if the value of one variable gives you information about the value of the other variable.
There is no relationship between the variables shoe size and grade point average.
Therefore, there is no association between the variables.
Hence, the discussion will not go further.
d.
Find the explanatory variable and response variable to plot a scatterplot.
Find the direction, form and strength of the scatterplot.
d.

Answer to Problem 1E
Circumference of apple is explanatory variable and weight is the response variable.
The association between the variables is straight, negative and strong.
Explanation of Solution
Given info:
The variables of the gasoline are given one is number of miles drove since filling up and the other is gallons remaining in the tank.
Justification:
Associated variables:
Two variables are associated or related if the value of one variable gives you information about the value of the other variable.
The two variables number of miles drove since filling up and gallons remaining in the tank are associated variables.
Response variable:
The variable to be measured or observed in regression analysis is called as response variable. In other words it can also be defined as, the variable that is changed due to the impact of the explanatory variable is defined as response variable.
Therefore, the dependent variables which is measured by the independent variables is called the response variable.
Here, given two variables are number of miles drove since filling up and gallons remaining in the tank.
The fuel that is remained in the tank is dependent on the fuel that is used for driving.
Therefore, gallons remaining in the tank is predicted with the number of miles drove since filling up.
That is, gallons remaining in the tank is depend on the number of miles drove since filling up.
Thus, gallons remaining in the tank is dependent or response variable.
Explanatory variable:
The variable used to predict or explain the response variable is called as predictor variable or explanatory variable. In other words it can also be defined as, the variable that explains the changes in the response variable is defined as explanatory variable.
Therefore, the independent variables to predict the response variable is called the predictor variable.
Here, given two variables are number of miles drove since filling up and gallons remaining in the tank.
Gallons remaining in the tank is predicted with the number of miles drove since filling up.
Thus, the number of miles drove since filling up is independent or explanatory variable.
Form of the association between variable:
The form of the association describes whether the data points follow a linear pattern or some other complicated curves. For data if it appears that a line would do a reasonable job of summarizing the overall pattern in the data. Then, the association between two variables is linear.
Here, gallons remaining in the tank decreases with the increase in the number of miles drove since filling up.
The pattern of the relationship between gallons remaining in the tank and the number of miles drove since filling up represents a straight line.
Hence, the association between the gallons remaining in the tank and the number of miles drove since filling up is linear.
Direction of association:
If the increase in the values of one variable increases the values of another variable, then the direction is positive. If the increase in the values of one variable decreases the values of another variable, then the direction is negative.
Here, gallons remaining in the tank decreases with the increase in the number of miles drove since filling up and gallons remaining in the tank increases with the decrease in the number of miles drove since filling up.
Hence, the direction of the association is negative.
Strength of the association:
The association is said to be strong if all the points are close to the straight line. It is said to be weak if all points are far away from the straight line and it is said to be moderate if the data points are moderately close to straight line.
Here, the variables will have moderate correlation between them.
Hence, the association between the variables is moderate.
Want to see more full solutions like this?
Chapter 6 Solutions
Stats
- 2PM Tue Mar 4 7 Dashboard Calendar To Do Notifications Inbox File Details a 25/SP-CIT-105-02 Statics for Technicians Q-7 Determine the resultant of the load system shown. Locate where the resultant intersects grade with respect to point A at the base of the structure. 40 N/m 2 m 1.5 m 50 N 100 N/m Fig.- Problem-7 4 m Gradearrow_forwardNsjsjsjarrow_forwardA smallish urn contains 16 small plastic bunnies - 9 of which are pink and 7 of which are white. 10 bunnies are drawn from the urn at random with replacement, and X is the number of pink bunnies that are drawn. (a) P(X=6)[Select] (b) P(X>7) ≈ [Select]arrow_forward
- A smallish urn contains 25 small plastic bunnies - 7 of which are pink and 18 of which are white. 10 bunnies are drawn from the urn at random with replacement, and X is the number of pink bunnies that are drawn. (a) P(X = 5)=[Select] (b) P(X<6) [Select]arrow_forwardElementary StatisticsBase on the same given data uploaded in module 4, will you conclude that the number of bathroom of houses is a significant factor for house sellprice? I your answer is affirmative, you need to explain how the number of bathroom influences the house price, using a post hoc procedure. (Please treat number of bathrooms as a categorical variable in this analysis)Base on the same given data, conduct an analysis for the variable sellprice to see if sale price is influenced by living area. Summarize your finding including all regular steps (learned in this module) for your method. Also, will you conclude that larger house corresponding to higher price (justify)?Each question need to include a spss or sas output. Instructions: You have to use SAS or SPSS to perform appropriate procedure: ANOVA or Regression based on the project data (provided in the module 4) and research question in the project file. Attach the computer output of all key steps (number) quoted in…arrow_forwardElementary StatsBase on the given data uploaded in module 4, change the variable sale price into two categories: abovethe mean price or not; and change the living area into two categories: above the median living area ornot ( your two group should have close number of houses in each group). Using the resulting variables,will you conclude that larger house corresponding to higher price?Note: Need computer output, Ho and Ha, P and decision. If p is small, you need to explain what type ofdependency (association) we have using an appropriate pair of percentages. Please include how to use the data in SPSS and interpretation of data.arrow_forward
- An environmental research team is studying the daily rainfall (in millimeters) in a region over 100 days. The data is grouped into the following histogram bins: Rainfall Range (mm) Frequency 0-9.9 15 10 19.9 25 20-29.9 30 30-39.9 20 ||40-49.9 10 a) If a random day is selected, what is the probability that the rainfall was at least 20 mm but less than 40 mm? b) Estimate the mean daily rainfall, assuming the rainfall in each bin is uniformly distributed and the midpoint of each bin represents the average rainfall for that range. c) Construct the cumulative frequency distribution and determine the rainfall level below which 75% of the days fall. d) Calculate the estimated variance and standard deviation of the daily rainfall based on the histogram data.arrow_forwardAn electronics company manufactures batches of n circuit boards. Before a batch is approved for shipment, m boards are randomly selected from the batch and tested. The batch is rejected if more than d boards in the sample are found to be faulty. a) A batch actually contains six faulty circuit boards. Find the probability that the batch is rejected when n = 20, m = 5, and d = 1. b) A batch actually contains nine faulty circuit boards. Find the probability that the batch is rejected when n = 30, m = 10, and d = 1.arrow_forwardTwenty-eight applicants interested in working for the Food Stamp program took an examination designed to measure their aptitude for social work. A stem-and-leaf plot of the 28 scores appears below, where the first column is the count per branch, the second column is the stem value, and the remaining digits are the leaves. a) List all the values. Count 1 Stems Leaves 4 6 1 4 6 567 9 3688 026799 9 8 145667788 7 9 1234788 b) Calculate the first quartile (Q1) and the third Quartile (Q3). c) Calculate the interquartile range. d) Construct a boxplot for this data.arrow_forward
- Pam, Rob and Sam get a cake that is one-third chocolate, one-third vanilla, and one-third strawberry as shown below. They wish to fairly divide the cake using the lone chooser method. Pam likes strawberry twice as much as chocolate or vanilla. Rob only likes chocolate. Sam, the chooser, likes vanilla and strawberry twice as much as chocolate. In the first division, Pam cuts the strawberry piece off and lets Rob choose his favorite piece. Based on that, Rob chooses the chocolate and vanilla parts. Note: All cuts made to the cake shown below are vertical.Which is a second division that Rob would make of his share of the cake?arrow_forwardThree players (one divider and two choosers) are going to divide a cake fairly using the lone divider method. The divider cuts the cake into three slices (s1, s2, and s3). If the choosers' declarations are Chooser 1: {s1 , s2} and Chooser 2: {s2 , s3}. Using the lone-divider method, how many different fair divisions of this cake are possible?arrow_forwardTheorem 2.6 (The Minkowski inequality) Let p≥1. Suppose that X and Y are random variables, such that E|X|P <∞ and E|Y P <00. Then X+YpX+Yparrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





