EBK NUMERICAL METHODS FOR ENGINEERS
7th Edition
ISBN: 9780100254145
Author: Chapra
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 6, Problem 11P
Use the Newton-Raphson method to find the root of
Employ initial guesses of (a) 2, (b) 6, and (c) 8. Explain your results.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Which procedure provides a method that may be used to apply Cstigliano's second theorem?
Find the three unknown on this problems using
Elimination Method and Cramer's Rule. Attach your
solutions and indicate your final answer.
Problem 1.
7z 5y
3z
16
%3D
3z
5y + 2z
-8
%3D
5z + 3y
7z
= 0
Problem 2.
4x-2y+3z 1
*+3y-4z -7
3x+ y+2z 5
I need the answer as soon as possible
Chapter 6 Solutions
EBK NUMERICAL METHODS FOR ENGINEERS
Ch. 6 - 6.1 Use simple fixed-point iteration to locate the...Ch. 6 - 6.2 Determine the highest real root of...Ch. 6 - Use (a) fixed-point iteration and (b) the...Ch. 6 - Determine the real roots of f(x)=1+5.5x4x2+0.5x3:...Ch. 6 - 6.5 Employ the Newton-Raphson method to determine...Ch. 6 - Determine the lowest real root of...Ch. 6 - 6.7 Locate the first positive root of
Where x...Ch. 6 - 6.8 Determine the real root of, with the modified...Ch. 6 - 6.9 Determine the highest real root of:...Ch. 6 - 6.10 Determine the lowest positive root...
Ch. 6 - 6.11 Use the Newton-Raphson method to find the...Ch. 6 - 6.12 Given
Use a root location technique to...Ch. 6 - You must determine the root of the following...Ch. 6 - Use (a) the Newton-Raphson method and (b) the...Ch. 6 - 6.15 The “divide and average” method, an old-time...Ch. 6 - (a) Apply the Newton-Raphson method to the...Ch. 6 - 6.17 The polynomial has a real root between 15...Ch. 6 - Use the secant method on the circle function...Ch. 6 - You are designing a spherical tank (Fig. P6.19) to...Ch. 6 - 6.20 The Manning equation can be written for a...Ch. 6 - 6.21 The function has a double root at. Use (a)...Ch. 6 - 6.22 Determine the roots of the following...Ch. 6 - 6.23 Determine the roots of the simultaneous...Ch. 6 - Repeat Prob. 6.23 except determine the positive...Ch. 6 - A mass balance for a pollutant in a well-mixed...Ch. 6 - Fir Prob. 6.25, the root can be located with...Ch. 6 - 6.27 Develop a user-friendly program for the...Ch. 6 - Develop a user-friendly program for the secant...Ch. 6 - 6.29 Develop a user-friendly program for the...Ch. 6 - 6.30 Develop a user-friendly program for Brent’s...Ch. 6 - 6.31 Develop a user-friendly program for the...Ch. 6 - 6.32 Use the program you developed in Prob. 6.31...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
True or False The quotient of two polynomial expressions is a rational expression, (p. A35)
Precalculus
Provide an example of a qualitative variable and an example of a quantitative variable.
Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
Complete each statement with the correct term from the column on the right. Some of the choices may not be used...
Intermediate Algebra (13th Edition)
153. A rain gutter is made from sheets of aluminum that are 20 inches wide. As shown in the figure, the edges ...
College Algebra (7th Edition)
(a) Make a stem-and-leaf plot for these 24 observations on the number of customers who used a down-town CitiBan...
APPLIED STAT.IN BUS.+ECONOMICS
Fill in each blank so that the resulting statement is true.
1. The degree of the polynomial function is _____....
Algebra and Trigonometry (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- i need the answer quicklyarrow_forwardA root of the function f(x) = x3 – 10x² +5 lies close to x = 0.7. Doing three iterations, compute this root using the Newton- Raphson method with an initial guess of x=1). Newton-Raphson iterative equation is given as: f(x;) Xi+1 = Xị - f'(xi)arrow_forwardUse a step size of 0.1 and round your answers to five decimal places if needed. Use Euler's method to approximate the solution x10 for the IVP y' 8y, y(0) 1. The Euler approximation for x10 isarrow_forward
- For the DE: dy/dx=2x-y y(0)=2 with h=0.2, solve for y using each method below in the range of 0 <= x <= 3: Q1) Using Matlab to employ the Euler Method (Sect 2.4) Q2) Using Matlab to employ the Improved Euler Method (Sect 2.5 close all clear all % Let's program exact soln for i=1:5 x_exact(i)=0.5*i-0.5; y_exact(i)=-x_exact(i)-1+exp(x_exact(i)); end plot(x_exact,y_exact,'b') % now for Euler's h=0.5 x_EM(1)=0; y_EM(1)=0; for i=2:5 x_EM(i)=x_EM(i-1)+h; y_EM(i)=y_EM(i-1)+(h*(x_EM(i-1)+y_EM(i-1))); end hold on plot (x_EM,y_EM,'r') % Improved Euler's Method h=0.5 x_IE(1)=0; y_IE(1)=0; for i=2:1:5 kA=x_IE(i-1)+y_IE(i-1); u=y_IE(i-1)+h*kA; x_IE(i)=x_IE(i-1)+h; kB=x_IE(i)+u; k=(kA+kB)/2; y_IE(i)=y_IE(i-1)+h*k; end hold on plot(x_IE,y_IE,'k')arrow_forwardPlease be careful with the decimalarrow_forwardProblem 3. A system of nonlinear equations is provided below. Using initial guesses of x = 1.5 and y = 1.5, use the Newton-Raphson method for systems to find the values of x and y within 0.0001%. x? = 6– y %3D y +3 = xarrow_forward
- Q3) Find the optimal solution by using graphical method:. Max Z = x1 + 2x2 Subject to : 2x1 + x2 < 100 X1 +x2 < 80 X1 < 40 X1, X2 2 0arrow_forward7. Consider an element that conducts heat as shown below with length L, cross sectional area A, and heat conductance k. Nodes 1 and 2 have temperatures of T, and T2. The heat flux q due to conduction is given by: dT ΔΤ q = - k dx Ax This relationship is analogous to Hooke's Law from the prior problem. Heat transfer by conduction Qc is given by: Oc = qA Use equilibrium requirements to solve for the heat transfer by conduction Qci and Qcz at the nodes and use these equations to derive a "conductance matrix" (or the stiffness matrix due to conduction which is the analog of the stiffness matrix) for this heat conducting element. For the sign convention, consider heat flux positive when heat flows into the element and negative when it flows out of the element. Show your full matrix equation and the conductance matrix. Oci T T2 Oc2 2arrow_forwardOnly part d. please show all work.arrow_forward
- Solve the Following Linear Equation Using Gauss Method: 3X₁ + 2X₂+ 100X; = 105 -X₁+3X₂ + 100X3 = 102 X₁ + 2X₂ X3 = 2 a) (0,0,0) b) (1,1,1) d) (5,5,5) c) (10.10.10)arrow_forwardLook at the two imagesarrow_forwardFind the solution for following nonlinear equation using Newton-Raphson method: f(x) = x^3+2"cos(x) and use -2 as the initial guess.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
03a: Numerical Differentiation Review; Author: Jaisohn Kim;https://www.youtube.com/watch?v=IMYsqbV4CEg;License: Standard YouTube License, CC-BY