To find:
Mathematical ecologists created a model to analyze population dynamics of the endangered northern spotted owl in the Pacific Northwest. The ecologists divided the female owl population into three categories: juvenile (up to 1 yr old), sub adult (1 to 2 yr old), and adult (over 2 yr old). They concluded that the change in the makeup of the northern spotted owl population in successive years could be described by the following matrix equation.
The numbers in the column matrices give the numbers of females in the three age groups after n years and
Each year 33 juvenile females are born for each 100 adult females | |
Each year 18% of the juvenile females survive to become sub adults. | |
Each year 71% of the sub adults survive to become adults, and 94% of the adults survive. |
(Source: Lumberton, R. H., R. McKinley, B. R. Noon, and C. Voss, “A Dynamic Analysis of Northern Spotted Owl Viability in a Fragmented Forest Landscape,” Conservation Biology, Vol. 6, No. 4.)
(a) Suppose there are currently 3000 female northern spotted owls made up of 690 juveniles, 210 sub adults, and 2100 adults. Use the matrix equation to determine the total number of female owls for each of the next 5 yr.
(b) Using advanced techniques from
What can we conclude about the long-term fate of the northern spotted owl?
(c) In the model, the main impediment to the survival of the northern spotted owl is the number 0.18 in the second row of the
• The first year of life is precarious for most animals living in the wild.
• Juvenile owls must eventually leave the nest and establish their own territory. If much of the forest near their original home has been cleared, then they are vulnerable to predators while searching for a new home.
Suppose that, thanks to better forest management, the number 0.18 can be increased to 0.3. Rework part (a) under this new assumption.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
College Algebra (12th Edition)
- In a volatile housing market, the overall value of a home can be modeled by V(x) = 415x² - 4600x + 200000, where V represents the value of the home and x represents each year after 2020. Part A: Find the vertex of V(x). Show all work. Part B: Interpret what the vertex means in terms of the value of the home.arrow_forwardShow all work to solve 3x² + 5x - 2 = 0.arrow_forwardTwo functions are given below: f(x) and h(x). State the axis of symmetry for each function and explain how to find it. f(x) h(x) 21 5 4+ 3 f(x) = −2(x − 4)² +2 + -5 -4-3-2-1 1 2 3 4 5 -1 -2 -3 5arrow_forward
- The functions f(x) = (x + 1)² - 2 and g(x) = (x-2)² + 1 have been rewritten using the completing-the-square method. Apply your knowledge of functions in vertex form to determine if the vertex for each function is a minimum or a maximum and explain your reasoning.arrow_forwardFill in the blanks to describe squares. The square of a number is that number Question Blank 1 of 4 . The square of negative 12 is written as Question Blank 2 of 4 , but the opposite of the square of 12 is written as Question Blank 3 of 4 . 2 • 2 = 4. Another number that can be multiplied by itself to equal 4 is Question Blank 4 of 4 .arrow_forwardHow many quadrillion BTU were generated using renewable energy sources?arrow_forward
- Use the graphs to find estimates for the solutions of the simultaneous equations.arrow_forward21:46 MM : 0 % sparxmaths.uk/studer Sparx Maths + 13 24,963 XP Andrey Roura 1A ✓ 1B X 1C 1D Summary Bookwork code: 1B 歐 Calculator not allowed Write the ratio 3 : 1½ in its simplest form. 32 Menuarrow_forwardUse the graph to solve 3x2-3x-8=0arrow_forward
- Într-un bloc sunt apartamente cu 2 camere și apartamente cu 3 camere , în total 20 de apartamente și 45 de camere.Calculați câte apartamente sunt cu 2 camere și câte apartamente sunt cu 3 camere.arrow_forward1.2.19. Let and s be natural numbers. Let G be the simple graph with vertex set Vo... V„−1 such that v; ↔ v; if and only if |ji| Є (r,s). Prove that S has exactly k components, where k is the greatest common divisor of {n, r,s}.arrow_forwardQuestion 3 over a field K. In this question, MË(K) denotes the set of n × n matrices (a) Suppose that A Є Mn(K) is an invertible matrix. Is it always true that A is equivalent to A-¹? Justify your answer. (b) Let B be given by 8 B = 0 7 7 0 -7 7 Working over the field F2 with 2 elements, compute the rank of B as an element of M2(F2). (c) Let 1 C -1 1 [4] [6] and consider C as an element of M3(Q). Determine the minimal polynomial mc(x) and hence, or otherwise, show that C can not be diagonalised. [7] (d) Show that C in (c) considered as an element of M3(R) can be diagonalised. Write down all the eigenvalues. Show your working. [8]arrow_forward
- Algebra and Trigonometry (6th Edition)AlgebraISBN:9780134463216Author:Robert F. BlitzerPublisher:PEARSONContemporary Abstract AlgebraAlgebraISBN:9781305657960Author:Joseph GallianPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra And Trigonometry (11th Edition)AlgebraISBN:9780135163078Author:Michael SullivanPublisher:PEARSONIntroduction to Linear Algebra, Fifth EditionAlgebraISBN:9780980232776Author:Gilbert StrangPublisher:Wellesley-Cambridge PressCollege Algebra (Collegiate Math)AlgebraISBN:9780077836344Author:Julie Miller, Donna GerkenPublisher:McGraw-Hill Education