The area of the metal plate.

Answer to Problem 78A
Area of stamping
Explanation of Solution
Concept used:
The metal sheet is divided into three trapeziums and a rectangle as shown.
The area of three trapeziums is added and the area of rectangle is subtracted from the metal plate to find the required area.
Calculation:
Area of whole rectangle
Here, length l = 46 ft and Width w = 42 ft
By substituting the above values in the formula;
Area of trapezium (2),
Here, height h = 6.50 ft, base b1= 9 ft and base b2= 14 ft
Since the dimensions of trapezium (2) and (3) are same thus, from symmetry
The area of trapezium (3),
Again, Area of trapezium (4),
Here, height h = 6.50 ft, base b1= 11 ft and base b2= 16 ft
And,
The area of rectangle,
Here, length l = 12.50 ft and
Width w = 42 − 28 = 14 ft
By substituting the above values in the formula;
Now, Adding the equations (1), (2), (3) and (4) and subtract equation (5) to calculate the required area of metal plate.
Thus,
Conclusion:
Thus, the area of stamping is
Want to see more full solutions like this?
Chapter 57 Solutions
EBK MATHEMATICS FOR MACHINE TECHNOLOGY
- Q7arrow_forwardFind the general solution of the given differential equation. y' + 4x3y = x3 y(x) = ? Give the largest interval over which the general solution is defined. Determine whether there are any transient terms in the general solution.arrow_forwardQ2*) Consider the extremisation of the integral I[y] = √²² F(x,y,y', y") dx x1 when y and y' are prescribed only at x = x1. Derive the so-called 'natural boundary conditions' that must be satisfied at x = x2. Taking a specific example: The functional I [y] is defined by I[y] = √² ((y″)² + y) dx with y(0) = 0 and y'(0) = 0. Write down the fourth-order Euler-Lagrange equation for this problem, stating the four boundary conditions. Find the general solution of the Euler-Lagrange equation, and then impose the boundary conditions to find the extremal.arrow_forward
- 3 00 By changing to circular coordinates, evaluate foo √²²+v³ dx dy.arrow_forward3. Z e2 n dz, n = 1, 2,. ..arrow_forwardQ/ By using polar Coordinates show that the system below has a limit cycle and show the stability of + his limit cycle: X² = x + x(x² + y² -1) y* = −x + y (x² + y²-1) -xarrow_forward
- xy Q/Given H (X,Y) = ex-XX+1 be a first integral find the corresponding system and study the Stability of of critical point of this system.arrow_forwardQ/ show that H (X,Y) = x²-4x-x² is 2 first integral of the system Y° = y 0 y° = 2x + x 3 then study the stability of critical point and draw phase portrait.arrow_forwardQ/Given the function H (X,Y) = H (X,Y) = y 2 X2 2 2 ²** 3 as a first integral, find the correspoding for this function and draw the phase portrait-arrow_forward
- Q/ show that the system has alimit cycle and draw phase portrait x = y + x ( 2-x²-y²)/(x² + y²) ½ 2 y = -x+y ( 2-x² - y²) / (x² + y²) ½/2arrow_forwardA sequence X = (xn) is said to be a contractive sequence if there is a constant 0 < C < 1 so that for all n = N. - |Xn+1 − xn| ≤ C|Xn — Xn−1| -arrow_forwardPlease explain this theorem and proofarrow_forward
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning





