Practice Problem 5.6 (solution page 575)
Let us continue exploring ways to evaluate polynomials, as described in Practice Problem 5 5. We can reduce the number of multiplications in evaluating a polynomial by applying Horner’s method, named after British mathematician William G. Horner (1786-1837). The idea is to repeatedly factor out the powers of x to get the following evaluation:
a0+x(a1+x(a2+···x(an-1+xan)···)) (5.3)
Using Horner's method, we can implement polynomial evaluation using the following code:
- A. For degree n, how many additions and how many multiplications does this code perform?
- B. On our reference machine, with the arithmetic operations having the latencies shown in Figure 5.12, we measure the CPE for this function to be 8.00. Explain how this CPE arises based on the data dependencies formed between iterations due to the operations implementing line 7 of the function.
- C. Explain how the function shown in Practice Problem 5.5 can run faster, even though it requires more operations.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
EBK COMPUTER SYSTEMS
Additional Engineering Textbook Solutions
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
SURVEY OF OPERATING SYSTEMS
Concepts Of Programming Languages
INTERNATIONAL EDITION---Engineering Mechanics: Statics, 14th edition (SI unit)
Modern Database Management
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
- can u solve this questionarrow_forward1. Unsigned Integers If we have an n-digit unsigned numeral dn-1d n-2...do in radix (or base) r, then the value of that numeral is n−1 r² di Σi=0 which is basically saying that instead of a 10's or 100's place we have an r's or r²'s place. For binary, decimal, and hex r equals 2, 10, and 16, respectively. Just a reminder that in order to write down a large number, we typically use the IEC or SI prefixing system: IEC: Ki = 210, Mi = 220, Gi = 230, Ti = 240, Pi = 250, Ei = 260, Zi = 270, Yi = 280; SI: K=103, M = 106, G = 109, T = 10¹², P = 1015, E = 10¹8, Z = 1021, Y = 1024. 1.1 Conversions a. (15 pts) Write the following using IEC prefixes: 213, 223, 251, 272, 226, 244 21323 Ki8 Ki 223 23 Mi 8 Mi b. (15 pts) Write the following using SI prefixes: 107, 10¹7, 10¹¹, 1022, 1026, 1015 107 10¹ M = 10 M = 1017102 P = 100 P c. (10 pts) Write the following with powers of 10: 7 K, 100 E, 21 G 7 K = 7*10³arrow_forwardanswer shoul avoid using AI and should be basic and please explainarrow_forward
- Node A is connected to node B by a 2000km fiber link having a bandwidth of 100Mbps. What is the total latency time (transmit + propagation) required to transmit a 4000 byte file using packets that include 1000 Bytes of data plus 40 Bytes of header.arrow_forwardanswer should avoid using AI and should be basic and explain pleasearrow_forwardasnwer should avoid using AIarrow_forward
- answer should avoid using AI (such as ChatGPT), do not any answer directly copied from AI would and explain codearrow_forwardWrite a c++ program that will count from 1 to 10 by 1. The default output should be: 1, 2, 3, 4, 5, 6 , 7, 8, 9, 10 There should be only a newline after the last number. Each number except the last should be followed by a comma and a space. To make your program more functional, you should parse command line arguments and change behavior based on their values. Argument Parameter Action -f, --first yes, an integer Change place you start counting -l, --last yes, an integer Change place you end counting -s, --skip optional, an integer, 1 if not specified Change the amount you add to the counter each iteration -h, —help none Print a help message including these instructions. -j, --joke none Tell a number based joke. So, if your program is called counter, counter -f 10 --last 4 --skip 2 should produce 10, 8, 6, 4 Please use the last supplied argument. If your code is called counter, counter -f 4 -f 5 -f 6 should count from 6. You should…arrow_forwardshow workarrow_forward
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage Learning