Foundations of Materials Science and Engineering
Foundations of Materials Science and Engineering
6th Edition
ISBN: 9781259696558
Author: SMITH
Publisher: MCG
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5.7, Problem 33SEP
To determine

The flux of Mn atoms between the surface and plane 2mm deep.

Expert Solution & Answer
Check Mark

Answer to Problem 33SEP

The flux of Mn atoms between the surface and plane 2mm deep is 6.8625×105atoms/m2s.

Explanation of Solution

Write the formula for lattice constant (a) of unit of FCC iron.

  a=4R2        (I)

Here, the radius of the iron atom is R.

Write the formula for volume (V) of the unit cell.

  V=a3        (II)

Write the formula for Fick’s law of diffusion.

  J=DdCdx        (III)

Here, flux or flow of atoms is J in atomsm2s, constant of diffusivity is D in m2s , and concentration gradient is dCdx in atomsm4.

Conclusion:

Refer Table 3.2, “Selected metals that have the BCC crystal structure at room temperature (20°C) and their lattice constants and atomic radii”.

The atomic radius of iron is 0.124nm.

Substitute 0.124nm for R in Equation (I).

  a=4(0.124nm)2=0.351nm

Substitute 0.351nm for a in Equation (II).

  V=(0.351nm)3=(0.351nm×109m1nm)3=4.32×1024m3

The number of atoms per unit volume is expressed as follows.

  atoms per unit volume=no. of atoms in FCC crystalvolumeof unit cell(V)=4atoms4.32×1024m3=9.25×1028atoms/m3

The concentration of atoms at the surface Cs is 0.6a%.

  Cs=0.6a%=0.6100(9.25×1028atoms/m3)=5.55×1026atoms/m3

The concentration of atom at the distance of 2mm below the surface C2mm is 0.1a%.

  C2mm=0.1a%=0.1100(9.25×1028atoms/m3)=9.25×1025atoms/m3

Refer Table 5.2, “Diffusivities at 500°C and 1000°C for selected solute-solvent diffusion systems”.

The diffusivity of manganese in FCC iron at 500°C is 3×1024m2/s.

Here,

  dC=C2mmCs=(9.25×1025atoms/m3)(5.55×1026atoms/m3)=4.575×1026atoms/m3

Substitute 3×1024m2/s for D, 4.575×1026atoms/m3 for dC, and 2mm for dx in Equation (III).

  J=(3×1024m2/s)4.575×1026atoms/m32mm=(3×1024m2/s)4.575×1026atoms/m32mm×1m1000m=6.8625×105atoms/m2s

Thus, the flux of Mn atoms between the surface and plane 2mm deep is 6.8625×105atoms/m2s.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Water at 20 o C enters the 4 cm-diameter, 14 m-long tube at a rate of 0.8 kg/s. The surfacetemperature of the pipe is maintained at 165 o Cby condensing geothermal stream at the shellside of the heat exchanger. Use water properCesat 85 o C for all calculaCons.(a) Show that the water flow is turbulent and thermally fully developed. (b) EsCmate the heat transfer coefficient for convecCve heat transfer from the pipe to the water. For a fully developed turbulent flow within the smooth pipe, the Nu number can becalculated from the following equaCon:(c) Calculate the exit temperature of the water. (d) Share your opinion on whether the use of water properties at 85°C is appropriate. Yes or No because:
Consider a hot automotive engine, which can beapproximated as a 0.5-m-high, 0.40-m-wide, and 0.8-m-long rectangular block. The bottom surface of the block isat a temperature of 100°C and has an emissivity of 0.95.The ambient air is at 20°C, and the road surface is at25°C. Determine the rate of heat transfer from the bottomsurface of the engine block by convection and radiationas the car travels at a velocity of 80 km/h. Assume theflow to be turbulent over the entire surface because of theconstant agitation of the engine block. a) Calculate convective heat transfer coefficient (h). b) Calculate the total heat transfer rate
8 mm- Top view -200 mm-180 mm- D B B 12 mm Side view B -8 mm D PROBLEM 1.56 In an alternative design for the structure of Prob. 1.55, a pin of 10-mm-diameter is to be used at A. Assuming that all other specifications remain unchanged, determine the allowable load P if an overall factor of safety of 3.0 is desired. PROBLEM 1.55 In the structure shown, an 8- mm-diameter pin is used at A, and 12-mm- diameter pins are used at B and D. Knowing that the ultimate shearing stress is 100 MPa at all connections and that the ultimate normal stress is 250 MPa in each of the two links joining B and D, determine the allowable load P if an overall factor of safety of 3.0 is desired. 20 mm P 8 mm- 12 mm- Front view

Chapter 5 Solutions

Foundations of Materials Science and Engineering

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Diffusion in Solids; Author: Engineering and Design Solutions;https://www.youtube.com/watch?v=K_1QmKJvNjc;License: Standard youtube license