EBK ELECTRIC MOTOR CONTROL
EBK ELECTRIC MOTOR CONTROL
10th Edition
ISBN: 9780100784598
Author: Herman
Publisher: YUZU
bartleby

Concept explainers

Question
Book Icon
Chapter 57, Problem 1SQ
To determine

Explain about the base speed of a DC motor.

Expert Solution & Answer
Check Mark

Explanation of Solution

Discussion:

The base speed of a DC motor is the speed attained by a motor at rated armature voltage, rated load current, and rate field current.

The motor operates below base speed when the armature voltage is reduced. The torque of the shunt motor remains constant at below base speed. The motor operates above base speed when the field current is reduced.

Conclusion:

Thus, the base speed of a DC motor is explained.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
I need help checking if its correct -E1 + VR1 + VR4 – E2 + VR3 = 0 -------> Loop 1 (a) R1(I1) + R4(I1 – I2) + R3(I1) = E1 + E2 ------> Loop 1 (b) R1(I1) + R4(I1) - R4(I2) + R3(I1) = E1 + E2 ------> Loop 1 (c) (R1 + R3 + R4) (I1)  - R4(I2)    = E1 + E2 ------> Loop 1 (d) Now that we have loop 1 equation will procced on finding the equation of I2 current loop. However, a reminder that because we are going in a clockwise direction, it goes against the direction of the current. As such we will get an equation for the matrix that will be:   E2 – VR4 – VR2 + E3 = 0 ------> Loop 2 (a) -R4(I2 – I1) -R2(I2) = -E2 – E3  ------> Loop 2 (b) -R4(I2) + R4(I1) - R2(I2) = -E2 – E3  -----> Loop 2 (c)                                     R4(I1) – (R4 + R2)(I2) = -E2 – E3  -----> Loop 2 (d) These two equations will be implemented to the matrix formula I = inv(A) * b       R11                        R12   (R1 + R3 + R4)     -R4     -R4     R4 + R2
10.2 For each of the following groups of sources, determineif the three sources constitute a balanced source, and if it is,determine if it has a positive or negative phase sequence.(a) va(t) = 169.7cos(377t +15◦) Vvb(t) = 169.7cos(377t −105◦) Vvc(t) = 169.7sin(377t −135◦) V(b) va(t) = 311cos(wt −12◦) Vvb(t) = 311cos(wt +108◦) Vvc(t) = 311cos(wt +228◦) V(c) V1 = 140 −140◦ VV2 = 114 −20◦ VV3 = 124 100◦ V
Apply single-phase equivalency to determine the linecurrents in the Y-D network shown in Fig. P10.13. The loadimpedances are Zab = Zbc = Zca = (25+ j5) W
Knowledge Booster
Background pattern image
Electrical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning