To show: That the given differential equation has a regular singular point at
Answer to Problem 1P
The first solution of the differential equation is
Explanation of Solution
Theorem used:
Let
If
If
Further the power series converges at least for
If
If
Calculation:
The given differential equation is given as
Compare the equation
Note that the singular points occur when
Thus, the singular point of the given equation is
If
For
Similarly, for
Since both are finite,
Since
Substitute the value of
Let
Therefore, the roots of the equation
Hence,
From the above Theorem, the first solution is given as
Substitute the value of
Differentiate the equation
The coefficients
Hence, the value of
Factoring out
And the values continues as such.
Hence, the first solution is
According to the same theorem, since
Where
Substitute the limits in the above equation it becomes as follows:
Thus, substitute the value of
To calculate the value of
First differentiate the equation
Again, differentiate the equation
Now, the given differential equation becomes as follows:
Equating the coefficient on both sides in the above equation.
Let
Hence, the second solution is
Want to see more full solutions like this?
Chapter 5 Solutions
Elementary Differential Equations
- Refer to page 52 for solving the heat equation using separation of variables. Instructions: • • • Write the heat equation in its standard form and apply boundary and initial conditions. Use the method of separation of variables to derive the solution. Clearly show the derivation of eigenfunctions and coefficients. Provide a detailed solution, step- by-step. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qo Hazb9tC440AZF/view?usp=sharing]arrow_forwardRefer to page 20 for orthogonalizing a set of vectors using the Gram-Schmidt process. Instructions: • Apply the Gram-Schmidt procedure to the given set of vectors, showing all projections and subtractions step-by-step. • Normalize the resulting orthogonal vectors if required. • Verify orthogonality by computing dot products between the vectors. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440AZF/view?usp=sharing]arrow_forwardRefer to page 54 for solving the wave equation. Instructions: • Apply d'Alembert's solution method or separation of variables as appropriate. • Clearly show the derivation of the general solution. • Incorporate initial and boundary conditions to obtain a specific solution. Justify all transformations and integrations. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qo Hazb9tC440AZF/view?usp=sharing]arrow_forward
- Refer to page 14 for calculating eigenvalues and eigenvectors of a matrix. Instructions: • Compute the characteristic polynomial by finding the determinant of A - XI. • Solve for eigenvalues and substitute them into (A - I) x = 0 to find the eigenvectors. • Normalize the eigenvectors if required and verify your results. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardExilet x = {a,b.c}dex.x―R> d(a,b) = d(b, c)=1' d(a, c) = 2 d(xx)=0VXEX is (x.d) m.s or not? 3.4 let x= d ((x,y), (3arrow_forwardHiw Show that sup (0,1) = 1 الفصل الثاني * Dif: let {an} be Seq. then fan?arrow_forward
- Please show as much work as possible to clearly show the steps you used to find each solution. If you plan to use a calculator, please be sure to clearly indicate your strategy. 1. The probability of a soccer game in a particular league going into overtime is 0.125. Find the following: a. The odds in favour of a game going into overtime. b. The odds in favour of a game not going into overtime. c. If the teams in the league play 100 games in a season, about how many games would you expect to go into overtime?arrow_forwardThe probability of being born in a particular month is about 1:12. Determine the probability of not being born in September. Express this ratio as a fraction, a decimal, a percent and in words.arrow_forwardIn his first hockey game of the season, Brayden takes a total of 10 shots on the goalie and scores 1 time. Later in the season, he takes 30 shots in total on the goalie. How many goals would you expect him to make? What assumptions are making? Are your assumptions realistic? Explain.arrow_forward
- The probability of being born in a particular month is about 1:12. Determine the probability of not being born in September. Express this ratio as a fraction, a decimal, a percent and in words.arrow_forwardThe probability of being born in a particular month is about 1:12. Determine the probability of not being born in September. Express this ratio as a fraction, a decimal, a percent and in words.arrow_forwardDevon is expected to receive 70% of the votes at the student council election. If there are 650 students in his school, how many are expected to vote for him?arrow_forward
- Advanced Engineering MathematicsAdvanced MathISBN:9780470458365Author:Erwin KreyszigPublisher:Wiley, John & Sons, IncorporatedNumerical Methods for EngineersAdvanced MathISBN:9780073397924Author:Steven C. Chapra Dr., Raymond P. CanalePublisher:McGraw-Hill EducationIntroductory Mathematics for Engineering Applicat...Advanced MathISBN:9781118141809Author:Nathan KlingbeilPublisher:WILEY
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,