The graphs of y = sin − 1 x , y = cos − 1 x , and y = tan − 1 x are shown in Table 5.10 on page 640. In Exercises 75-84, use transformations (vertical shifts, horizontal shifts, reflections, stretching, or shrinking) of these graphs to graph each function. Then use interval notation to give the function's domain and range. g ( x ) = sin − 1 ( x + 1 )
The graphs of y = sin − 1 x , y = cos − 1 x , and y = tan − 1 x are shown in Table 5.10 on page 640. In Exercises 75-84, use transformations (vertical shifts, horizontal shifts, reflections, stretching, or shrinking) of these graphs to graph each function. Then use interval notation to give the function's domain and range. g ( x ) = sin − 1 ( x + 1 )
Solution Summary: The author analyzes the graph of the inverse trigonometric function, g(x)=mathrmsin-1x.
The graphs of
y
=
sin
−
1
x
,
y
=
cos
−
1
x
, and
y
=
tan
−
1
x
are shown in Table 5.10 on page 640. In Exercises 75-84, use transformations (vertical shifts, horizontal shifts, reflections, stretching, or shrinking) of these graphs to graph each function. Then use interval notation to give the function's domain and range.
I want to learn this topic l dont know anything about it
Solve the linear system of equations attached using Gaussian elimination (not Gauss-Jordan) and back subsitution.
Remember that:
A matrix is in row echelon form if
Any row that consists only of zeros is at the bottom of the matrix.
The first non-zero entry in each other row is 1. This entry is called aleading 1.
The leading 1 of each row, after the first row, lies to the right of the leading 1 of the previous row.
PRIMERA EVALUACIÓN SUMATIVA
10. Determina la medida de los ángulos in-
teriores coloreados en cada poligono.
⚫ Octágono regular
A
11. Calcula es número de lados qu
poligono regular, si la medida
quiera de sus ángulos internos
• a=156°
A= (-2x+80
2
156 180-
360
0 = 24-360
360=24°
• a = 162°
1620-180-360
6=18-360
360=19
2=360=
18
12. Calcula las medida
ternos del cuadrilá
B
X+5
x+10
A
X+X+
Sx+6
5x=3
x=30
0
лаб
• Cuadrilátero
120°
110°
• α = 166° 40'
200=180-360
0 =
26-360
360=20
ひ=360
20
18 J
60°
⚫a=169° 42' 51.43"
169.4143180-340
0 = 10.29 54-360
360 10.2857
2=360
10.2857
@Sa
Chapter 5 Solutions
MyLab Math with Pearson eText -- Combo Access Card (18-wk) for Algebra & Trigonometry
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.