
Advanced Engineering Mathematics
10th Edition
ISBN: 9780470458365
Author: Erwin Kreyszig
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
1. Matrix Operations
Given:
A = [ 33 ]A-[3-321]
-3
B = [342]B-[3-41-2]
(a) A² A2
Multiply A× A:
-3
=
(3 x 32x-3) (3 x 22 x 1)
| = |[19–63
|-9-3 -6+21] =
A² = 33 33 1-3×3+1x-3) (-3×2+1x1)
[12]A2=[3-321][3-321]=[(3×3+2x-3)(-3×3+1x-3)(3×2+2×1)(-3×2+1×1)]=[9-6-9-36+2-6+1
]=[3-128-5]
(b) | A ||A| Determinant of A
| A | (3 × 1) (2 x-3)=3+ 6 = 9|A|=(3×1)-(2x-3)=3+6=9
(c) Adjoint of A
Swap diagonal elements and change sign of off-diagonals:
A = [33], so adj (A) = |¯²]A=[3-321], so adj(A)=[13–23]
-3
(d) B-¹B-1
First find | B ||B|:
|B | (3x-2)- (1 × -4) = -6 + 4 = −2|B|=(3x-2)-(1x-4)=-6+4=-2
Then the adjoint of B:
adj (B) = [²
3
adj(B)=[-24-13]
Now,
B-1
1
=
|B|
· adj (B) = 1 [²¯¯³¹³] = [2₂ B
0.5
|B-1=|B|1-adj(B)=-21[-24-13]=[1-20.5-1.5]
2.
(a) Matrix Method: Solve
(2x + 3y = 6
(2x-3y=14
{2x+3y=62x-3y=14
Matrix form:
22 33-22
=
[223-3][xy]=[614]
Find inverse of coefficient matrix: Determinant:
| M | (2x-3) - (3 x 2) = -6 -6 = -12|M|=(2x-3)-(3×2)=-6-6=-12
Adjoint:
adj(M) = [3]adj(M)-[-3-2-32]
So…
Questions
An insurance company's cumulative incurred claims for the last 5 accident years are given
in the following table:
Development Year
Accident Year 0
2018
1 2 3 4
245 267 274 289 292
2019
255 276 288 294
2020
265 283 292
2021
263 278
2022
271
It can be assumed that claims are fully run off after 4 years. The premiums received for
each year are:
Accident Year Premium
2018
306
2019
312
2020
318
2021
326
2022
330
You do not need to make any allowance for inflation.
1. (a) Calculate the reserve at the end of 2022 using the basic chain ladder method.
(b) Calculate the reserve at the end of 2022 using the Bornhuetter-Ferguson method.
2. Comment on the differences in the reserves produced by the methods in Part 1.
The numbered disks shown are placed in a box and one disk is selected at
random. Find the probability of selecting a 4, given that a green disk is selected.
Find the probability of selecting a 4, given that a green disk is selected.
(Type an integer or a simplified fraction.)
green
blue
green green
green
blue
green
blue
Chapter 5 Solutions
Advanced Engineering Mathematics
Ch. 5.1 - WRITING AND LITERATURE PROJECT. Power Series in...Ch. 5.1 - Determine the radius of convergence. Show the...Ch. 5.1 - Determine the radius of convergence. Show the...Ch. 5.1 - Determine the radius of convergence. Show the...Ch. 5.1 - Determine the radius of convergence. Show the...Ch. 5.1 - Apply the power series method. Do this by hand,...Ch. 5.1 - Apply the power series method. Do this by hand,...Ch. 5.1 - Apply the power series method. Do this by hand,...Ch. 5.1 - Apply the power series method. Do this by hand,...Ch. 5.1 - Find a power series solution in powers of x. Show...
Ch. 5.1 - Find a power series solution in powers of x. Show...Ch. 5.1 - Find a power series solution in powers of x. Show...Ch. 5.1 - Find a power series solution in powers of x. Show...Ch. 5.1 - Find a power series solution in powers of x. Show...Ch. 5.1 - Prob. 15PCh. 5.1 - Prob. 16PCh. 5.1 - CAS PROBLEMS. IVPs
Solve the initial value problem...Ch. 5.1 - Prob. 18PCh. 5.1 - Prob. 19PCh. 5.2 - Legendre functions for n = 0. Show that (6) with n...Ch. 5.2 - Legendre functions for n = 1. Show that (7) with n...Ch. 5.2 - Special n. Derive (11′) from (11).
Ch. 5.2 - Prob. 4PCh. 5.2 - Obtain P6 and P7.
Ch. 5.2 - Prob. 11PCh. 5.2 - Prob. 12PCh. 5.2 - Rodrigues’s formula. Obtain (11′) from (13).
Ch. 5.2 - Prob. 14PCh. 5.2 - Prob. 15PCh. 5.3 - Prob. 1PCh. 5.3 - Prob. 2PCh. 5.3 - Prob. 3PCh. 5.3 - Prob. 4PCh. 5.3 - Prob. 5PCh. 5.3 - Prob. 6PCh. 5.3 - Prob. 7PCh. 5.3 - Prob. 8PCh. 5.3 - Prob. 9PCh. 5.3 - Prob. 10PCh. 5.3 - Find a basis of solutions by the Frobenius method....Ch. 5.3 - Find a basis of solutions by the Frobenius method....Ch. 5.3 - Find a general solution in terms of hypergeometric...Ch. 5.3 - Find a general solution in terms of hypergeometric...Ch. 5.3 - Find a general solution in terms of hypergeometric...Ch. 5.3 - Find a general solution in terms of hypergeometric...Ch. 5.3 - Find a general solution in terms of hypergeometric...Ch. 5.3 - Find a general solution in terms of hypergeometric...Ch. 5.4 - Prob. 1PCh. 5.4 - Prob. 2PCh. 5.4 - Prob. 3PCh. 5.4 - Prob. 4PCh. 5.4 - Prob. 5PCh. 5.4 - Prob. 6PCh. 5.4 - Prob. 7PCh. 5.4 - Prob. 8PCh. 5.4 - Prob. 9PCh. 5.4 - Prob. 10PCh. 5.4 - Prob. 11PCh. 5.4 - Prob. 12PCh. 5.4 - Prob. 13PCh. 5.4 - Prob. 14PCh. 5.4 - Interlacing of zeros. Using (21) and Rolle’s...Ch. 5.4 - Prob. 16PCh. 5.4 - Bessel’s equation. Show that for (1) the...Ch. 5.4 - Elementary Bessel functions. Derive (22) in...Ch. 5.4 - Prob. 19PCh. 5.4 - Prob. 20PCh. 5.4 - Use the powerful formulas (21) to do Probs. 19–25....Ch. 5.4 - Prob. 22PCh. 5.4 - Use the powerful formulas (21) to do Probs. 19–25....Ch. 5.4 - Use the powerful formulas (21) to do Probs. 19–25....Ch. 5.4 - Use the powerful formulas (21) to do Probs. 19–25....Ch. 5.5 - Prob. 1PCh. 5.5 - Prob. 2PCh. 5.5 - Prob. 3PCh. 5.5 - Prob. 4PCh. 5.5 - Prob. 5PCh. 5.5 - Prob. 6PCh. 5.5 - Prob. 7PCh. 5.5 - Prob. 8PCh. 5.5 - Prob. 9PCh. 5.5 - Hankel functions. Show that the Hankel functions...Ch. 5.5 - Modified Bessel functions of the first kind of...Ch. 5.5 - Prob. 13PCh. 5.5 - Reality of Iv. Show that Iv(x) is real for all...Ch. 5.5 - Modified Bessel functions of the third kind...Ch. 5 - Prob. 1RQCh. 5 - What is the difference between the two methods in...Ch. 5 - Prob. 3RQCh. 5 - Prob. 4RQCh. 5 - Write down the most important ODEs in this chapter...Ch. 5 - Can a power series solution reduce to a...Ch. 5 - What is the hypergeometric equation? Where does...Ch. 5 - List some properties of the Legendre polynomials.
Ch. 5 - Prob. 9RQCh. 5 - Can a Bessel function reduce to an elementary...Ch. 5 - POWER SERIES METHOD OR FROBENIUS METHOD
Find a...Ch. 5 - POWER SERIES METHOD OR FROBENIUS METHOD
Find a...Ch. 5 - POWER SERIES METHOD OR FROBENIUS METHOD
Find a...Ch. 5 - Prob. 14RQCh. 5 - Prob. 15RQCh. 5 - Prob. 16RQCh. 5 - Prob. 17RQCh. 5 - Prob. 18RQCh. 5 - Prob. 19RQCh. 5 - Prob. 20RQ
Knowledge Booster
Similar questions
- The table shows the distribution, by age, of a random sample of 3160 moviegoers ages 12-74. If one moviegoer is randomly selected from this population, find the probability, expressed as a simplified fraction, that the moviegoer is not in the 65-74 age range. The probability is (Type an integer or a simplified fraction.) Age Distribution of Moviegoers Ages Number 12-24 1090 25-44 860 45-64 890 65-74 320arrow_forwardUse the spinner shown. It is equally probable that the pointer will land on any one of the six regions. If the pointer lands on a borderline, spin again. If the pointer is spun twice, find the probability that it will land on yellow and then yellow. Find the probability that the spinner will land on yellow and then yellow. The probability is (Type an integer or a simplified fraction.) Green Red Gray Red Blue Yellow Q ☑arrow_forwardUse the spinner shown to answer the question. Assume that it is equally probable that the pointer will land on any one of the colored regions. If the pointer lands on a borderline, spin again. If the spinner is spun once, find the probability that the pointer lands in a region that is red or green. The probability that the pointer lands in a region that is red or green is (Type an integer or a simplified fraction.) green red green red yellow redarrow_forward
- Let $f(x)$ be a continuous function on the interval $[0,1]$ such that $f(0) = f(1) = 0$. Prove that for any positive integer $n$, there exists a real number $x$ in $[0, 1 - \frac{1}{n}]$ such that $f(x) = f(x + \frac{1}{n})$.arrow_forwardK/FT イ 5 SLOPE AB TB3.3 C 15 TROY 16.7 y Yo 13.3 GIVEN: BEAM + LOADING DRAW V+H SOLUTION: DIAGRAMS 1) FIND REACTIONS R=14/15 (20) = 20k (@EMB=20F (5) - Roy(15) RRY = 6.7k EFу=0= 20+67+RBY RBY = 13.3k+ 5 6.7 roarrow_forwardQuestion 1: (10 points) Determine whether the following Realation is an Equivalent Relation or not, and show the reason for your answer. If A={1,0} R= {(1,1), (0,0), (1,0), (0,1)}arrow_forward
- whats this answer Ginger records her grades for each assignment in science.arrow_forwardSolve the following initial value problem the initial conditions aw +3. = 12z+18 +9, Əz2 მი w(x, 0)=2x3+3x²+8x ду From (38) auction we obtain follow (x, 0) =i (6x²-6x+2).arrow_forwardQuestion 1 20 pts Test data on the bending strength of construction wood poles of various diameter are presented below assuming the same length. Kip- 1000 lbf. Using the following data with 2nd order Newton polynomial interpolation, we want to determine the strength of the material for x=4.9 in. Which data point will be used as x? After you found x0, enter the value of x-xo in the solution. Answer shall be in one decimal place. Distance (in) Strength (kips) 100 3.6 1.1 5.6 3.6 5.6 200 300 400 500arrow_forward
- Test data on the bending strength of construction wood poles of various diameter are presented below assuming the same length. Kip- 1000 lbf. Using the following data with 2nd order Newton polynomial interpolation, we want to determine the strength of the material for x=4.3 in. Which data point will be used as x0? After you found x0, enter the value of x-xo in the solution. Answer shall be in one decimal place. Distance (in) Strength (kips) 100 2.7 1 6.8 0.6 5.7 200 300 400 500arrow_forward2/2. prove that if G is Euler then so is L (G).arrow_forwardQ10. What are the chromatic numbers of the following two graphs? G H A. x(G) = 2 and x(H) = 2 B. x(G) = 2 and x(H) = 3 C. x(G) = 3 and x(H) = 2 D. X(G) = 3 and x(H) = 3 E. x(G) = 4 and x(H) = 3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Advanced Engineering MathematicsAdvanced MathISBN:9780470458365Author:Erwin KreyszigPublisher:Wiley, John & Sons, IncorporatedNumerical Methods for EngineersAdvanced MathISBN:9780073397924Author:Steven C. Chapra Dr., Raymond P. CanalePublisher:McGraw-Hill EducationIntroductory Mathematics for Engineering Applicat...Advanced MathISBN:9781118141809Author:Nathan KlingbeilPublisher:WILEY
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,

Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education

Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,

