Loose Leaf for Vector Mechanics for Engineers: Statics and Dynamics
Loose Leaf for Vector Mechanics for Engineers: Statics and Dynamics
12th Edition
ISBN: 9781259977206
Author: BEER, Ferdinand P., Johnston Jr., E. Russell, Mazurek, David, Cornwell, Phillip J., SELF, Brian
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5.3, Problem 5.83P
To determine

How many years does the dam becomes unsafe?

Expert Solution & Answer
Check Mark

Answer to Problem 5.83P

The dam becomes unsafe in is service until 282years.

Explanation of Solution

Sketch the free body diagram of the dam as shown in the Figure 1.

Loose Leaf for Vector Mechanics for Engineers: Statics and Dynamics, Chapter 5.3, Problem 5.83P

Write the equation for the pressure.

P=FA (I)

Here, the pressure is P, force exerted on the dam is F, and the area of the dam is A

Write the equation for force exerted on the dam without the silt.

Pw=12Apw (II)

Here, the force exerted on the dam is Pw, area of the dam is A, and the pressure of the horizontal force of the water is pw.

Write the equation for gage pressure in a liquid.

pw=ρgh

Here, the density of the water is ρ, aceeleration due to gravity is g, and the height of the dam is h.

Replace lb for A and ρgh for pw in equation (II).

Pw=12(lb)ρgh (III)

Here, the length of the dam is l, breadth of the dam is b, aceeleration due to gravity is g, and the height of the dam is h.

Substitute 6.6m for l, 1m for b, 9.81m/s2 for g, 1000kg/m3 for ρ, and 6.6m for h in equation (III).

Pw=12[(6.6m)(1m)](1000kg/m3)(9.81m/s2)(6.6m)=213661.8N

Write the equation for 120 percentage of resisting force exerted on the dam.

Pr=1.2Pw

Here, the resisting force exerted on the dam is Pr.

Substitute 213661.8N for Pw in above equation to solve for Pr.

Pr=1.2(213661.8N)=256394.16N

Write the equation for force exerted on the dam after a depth that the silt has settled.

Pw=12(ld)(b)ρg(hd) (IV)

Here, force exerted on the dam after silt is settled is Pw and distance of the silt settled in the dam is d.

Substitute 6.6m for l, 1m for b, 9.81m/s2 for g, 1000kg/m3 for ρ, and 6.6m for h in equation (IV).

Pw=12[(6.6md)(1m)][(1000kg/m3)(9.81m/s2)(6.6d)m]=4905(6.6d)2N

Write the equation for pressure force exerted on the dam above the silt at region I

(Refer fig 1).

PI=dbρg(hd) (V)

Here, force exerted on the dam above the silt at region I is PI and width of the dam is b.

Substitute 1m for b, 9.81m/s2 for g, 1000kg/m3 for ρ, and 6.6m for h in equation (V).

PI=[d(1m)][(1000kg/m3)(9.81m/s2)(6.6d)m]=9810(6.6dd2)N

Write the equation for pressure force exerted on the dam surface of the silt at region II

(Refer fig 1).

PII=12(db)ρsg(d) (VI)

Here, force exerted on the surface of the silt at region II is PII and density of the silt is ρs.

Substitute 1m for b, 9.81m/s2 for g, and 1.76×103kg/m3 for ρs in equation (VI).

PII=12[d(1m)][(1.76×103kg/m3)(9.81m/s2)(d)m]=(8632.8d2)N

The net force exerted on the dam on both the regions is,

P=Pw+PI+PII (VII)

Here, the net force exerted on the dam is P.

Conclusion:

Substitute 4905(6.6d)2N for Pw, 9810(6.6dd2)N for PI, and (8632.8d2)N for PII in Equation (VII).

P=4905(6.6d)2N+9810(6.6dd2)N+(8632.8d2)N=[4905(43.5613.2d+d2)+9810(6.6dd2)+(8632.8d2)]N=[213661.864746d+4905d2+64746d9810d2+8632.8d2]N=[3727.8d2+213661.8]N

The net force exerted on the dam is equal to the resisting force exerted on the dam.

P=Pr

Substitute [3727.8d2+213661.8]N for P and 256394.16N for Pr in above Equation.

[3727.8d2+213661.8]N=256394.16N3727.8d2=256394.16N213661.8N3727.8d2=42732.2

Solve the above equation for d

d2=11.4631m2d=3.386m

Write the equation for number of years dam becomes unsafe.

d=NR

Here, the number of years dam becomes unsafe is represented as N and rate of the dam to be unsafe is R.

Substitute 3.386m for d and 12mm/year for R to solve for N.

3.386m=N(12mm/year)(103m1mm)3.386m=(12×103m/year)NN=3.386m12×103m/year=282years

The dam becomes unsafe in is service until 282years.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
O A water channel 12 feet wide is blocked by a rectangular barrier shown by member ABD. Four supporting struts (member BC) are evenly spaced every 4 feet along the 12-foot width of the barrier. The weight of barrier ABD is 200 lbs. Assume the weight of the struts are negligible. The specific weight of water is 62.4 lb/ft³. Determine the magnitude of the force in each strut and state whether the strut is in tension or compression. A 60° 3 ft 5 ft 3 ft 60°
A 100 lb drum, having a diameter of 23 in., is placed on its side and acts as a dam in a 2.5 ft. wide water channel. The drum is anchored to the sides of the channel. Water on the right side of the drum is 23 in. deep while water at the left side of the drum is 11.5 in. deep. 12.0 Determine the angle of the resultant of the pressure forces acting on the drum with respect to the horizontal. a.) 47.9° c.) 90° e.) b.) 57.5° d.) 55°
B1

Chapter 5 Solutions

Loose Leaf for Vector Mechanics for Engineers: Statics and Dynamics

Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - Locate the centroid of the plane area shown.Ch. 5.1 - PROBLEM 5.16 Determine the y coordinate of the...Ch. 5.1 - Show that as r1 approaches r2, the location of the...Ch. 5.1 - Prob. 5.18PCh. 5.1 - Prob. 5.19PCh. 5.1 - A built-up beam is constructed by nailing seven...Ch. 5.1 - The horizontal x axis is drawn through the...Ch. 5.1 - The horizontal x-axis is drawn through the...Ch. 5.1 - PROBLEM 5.23 The first moment of the shaded area...Ch. 5.1 - A thin, homogeneous wire is bent to form the...Ch. 5.1 - A thin, homogeneous wire is bent to form the...Ch. 5.1 - Prob. 5.26PCh. 5.1 - A thin, homogeneous wire is bent to form the...Ch. 5.1 - Prob. 5.28PCh. 5.1 - The frame for a sign is fabricated from thin, flat...Ch. 5.1 - The homogeneous wire ABCD is bent as shown and is...Ch. 5.1 - The homogeneous wire ABCD is bent as shown and is...Ch. 5.1 - Prob. 5.32PCh. 5.1 - Knowing that the distance h has been selected to...Ch. 5.2 - Determine by direct integration the centroid of...Ch. 5.2 - 5.34 through 5.36 Determine by direct integration...Ch. 5.2 - 5.34 through 5.36 Determine by direct integration...Ch. 5.2 - 5.37 through 5.39 Determine by direct integration...Ch. 5.2 - 5.37 through 5.39 Determine by direct integration...Ch. 5.2 - Prob. 5.39PCh. 5.2 - 5.40 and 5.41 Determine by direct integration the...Ch. 5.2 - 5.40 and 5.41 Determine by direct integration the...Ch. 5.2 - 5.42 Determine by direct integration the centroid...Ch. 5.2 - 5.43 and 5.44 Determine by direct integration the...Ch. 5.2 - 5.43 and 5.44 Determine by direct integration the...Ch. 5.2 - 5.45 and 5.46 A homogeneous wire is bent into the...Ch. 5.2 - 5.45 and 5.46 A homogeneous wire is bent into the...Ch. 5.2 - A homogeneous wire is bent into the shape shown....Ch. 5.2 - 5.48 and 5.49 Determine by direct integration the...Ch. 5.2 - Prob. 5.49PCh. 5.2 - Prob. 5.50PCh. 5.2 - Determine the centroid of the area shown when a =...Ch. 5.2 - Determine the volume and the surface area of the...Ch. 5.2 - Determine the volume and the surface area of the...Ch. 5.2 - Determine the volume and the surface area of the...Ch. 5.2 - Determine the volume and the surface area of the...Ch. 5.2 - Determine the volume of the solid generated by...Ch. 5.2 - Prob. 5.57PCh. 5.2 - Prob. 5.58PCh. 5.2 - Prob. 5.59PCh. 5.2 - Determine the capacity, in liters, of the punch...Ch. 5.2 - Determine the volume and total surface area of the...Ch. 5.2 - Prob. 5.62PCh. 5.2 - Determine the total surface area of the solid...Ch. 5.2 - Determine the volume of the brass collar obtained...Ch. 5.2 - The shade for a wall-mounted light is formed from...Ch. 5.3 - 5.66 and 5.67 For the beam and loading shown,...Ch. 5.3 - 5.66 and 5.67 For the beam and loading shown,...Ch. 5.3 - 5.68 through 5.73 Determine the reactions at the...Ch. 5.3 - 5.68 through Determine the reactions at the beam...Ch. 5.3 - 5.68 through 5.73 Determine the reactions at the...Ch. 5.3 - 5.68 through Determine the reactions at the beam...Ch. 5.3 - 5.68 through 5.73 Determine the reactions at the...Ch. 5.3 - 5.68 through 5.73 Determine the reactions at the...Ch. 5.3 - Determine (a) the distance a so that the vertical...Ch. 5.3 - Prob. 5.75PCh. 5.3 - Determine the reactions at the beam supports for...Ch. 5.3 - Determine (a) the distributed load w0 at the end D...Ch. 5.3 - The beam AB supports two concentrated loads and...Ch. 5.3 - For the beam and loading of Prob. 5.78, determine...Ch. 5.3 - The cross section of a concrete dam is as shown....Ch. 5.3 - Prob. 5.81PCh. 5.3 - The dam for a lake is designed to withstand the...Ch. 5.3 - Prob. 5.83PCh. 5.3 - The friction force between a 6 6-ft square sluice...Ch. 5.3 - A freshwater marsh is drained to the ocean through...Ch. 5.3 - Prob. 5.86PCh. 5.3 - The 3 4-m side of an open tank is hinged at its...Ch. 5.3 - Prob. 5.88PCh. 5.3 - A 0.5 0.8-m gate AB is located at the bottom of a...Ch. 5.3 - Prob. 5.90PCh. 5.3 - Prob. 5.91PCh. 5.3 - Prob. 5.92PCh. 5.3 - Prob. 5.93PCh. 5.3 - Prob. 5.94PCh. 5.3 - The square gate AB is held in the position shown...Ch. 5.4 - Consider the composite body shown. Determine (a)...Ch. 5.4 - A cone and a cylinder of the same radius a and...Ch. 5.4 - Determine the location of the center of gravity of...Ch. 5.4 - Prob. 5.99PCh. 5.4 - For the stop bracket shown, locate the x...Ch. 5.4 - Fig. P5.100 and P5.101 5.101 For the stop bracket...Ch. 5.4 - For the machine element shown, locate the x...Ch. 5.4 - Fig. P5.102 and P5.103 5.103 For the machine...Ch. 5.4 - For the machine element shown, locate the y...Ch. 5.4 - For the machine element shown, locate the x...Ch. 5.4 - 5.106 and 5.107 Locate the center of gravity of...Ch. 5.4 - 5.106 and 5.107 Locate the center of gravity of...Ch. 5.4 - A corner reflector for tracking by radar has two...Ch. 5.4 - A wastebasket, designed to fit in the corner of a...Ch. 5.4 - Prob. 5.110PCh. 5.4 - Prob. 5.111PCh. 5.4 - Prob. 5.112PCh. 5.4 - Locate the center of gravity of the sheet-metal...Ch. 5.4 - A thin steel wire with a uniform cross section is...Ch. 5.4 - The frame of a greenhouse is constructed from...Ch. 5.4 - Locate the center of gravity of the figure shown,...Ch. 5.4 - PROBLEM 5.117 Locate the center of gravity of the...Ch. 5.4 - A scratch awl has a plastic handle and a steel...Ch. 5.4 - Prob. 5.119PCh. 5.4 - PROBLEM 5.120 A brass collar, of length 2.5 in.,...Ch. 5.4 - Prob. 5.121PCh. 5.4 - Prob. 5.122PCh. 5.4 - Prob. 5.123PCh. 5.4 - Prob. 5.124PCh. 5.4 - PROBLEM 5.125 Locate the centroid of the volume...Ch. 5.4 - PROBLEM 5.126 Locate the centroid of the volume...Ch. 5.4 - Prob. 5.127PCh. 5.4 - Prob. 5.128PCh. 5.4 - PROBLEM 5.129 Locate the centroid of the volume...Ch. 5.4 - Prob. 5.130PCh. 5.4 - Prob. 5.131PCh. 5.4 - PROBLEM 5.132 The sides and the base of a punch...Ch. 5.4 - Locate the centroid of the section shown, which...Ch. 5.4 - Prob. 5.134PCh. 5.4 - Prob. 5.135PCh. 5.4 - Alter grading a lot, a builder places four stakes...Ch. 5 - 5.137 and 5.138 Locate the centroid of the plane...Ch. 5 - 5.137 and 5.138 Locate the centroid of the plane...Ch. 5 - Prob. 5.139RPCh. 5 - Prob. 5.140RPCh. 5 - Prob. 5.141RPCh. 5 - Prob. 5.142RPCh. 5 - Determine the reactions at the supports for the...Ch. 5 - A beam is subjected to a linearly distributed...Ch. 5 - Prob. 5.145RPCh. 5 - Prob. 5.146RPCh. 5 - An 8-in.-diameter cylindrical duct and a 4 8-in....Ch. 5 - Three brass plates are brazed to a steel pipe to...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY