For Exercises 55-56, find the partial fraction decomposition for the given expression. [ Hint : Use the substitution u = e x and recall that e 2 x = ( e x ) 2 .] − 3 e x − 22 e 2 x + 3 e x − 4
For Exercises 55-56, find the partial fraction decomposition for the given expression. [ Hint : Use the substitution u = e x and recall that e 2 x = ( e x ) 2 .] − 3 e x − 22 e 2 x + 3 e x − 4
Solution Summary: The author explains how to factorize the denominator g(x) into quadratic and linear factors.
Write out the form of the partial fraction decomposition of the function (as in this example). Do not determine the numerical values of the coefficients.
x 204 x 5 =
x²-2x+1
(b)
x³+x²+x
3n
бх3 + x2—5х — 7
-dx. Use partial fractions
3x2 – x – 2
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.