
Concept explainers
Unsanitary Restaurants
Health officials routinely check the sanitary condition of restaurants. Assume you visit a popular tourist spot and read in the newspaper that in 3 out of every 7 restaurants checked, unsatisfactory health conditions were found. Assuming you are planning to eat out 10 times while you are there on vacation, answer the following questions.
1. How likely is it that you will eat at three restaurants with unsanitary conditions?
2. How likely is it that you will eat at four or five restaurants with unsanitary conditions?
3. Explain how you would compute the
4. What is the most likely number to occur in this experiment?
5. How variable will the data be around the most likely number?
6. How do you know that this is a binomial distribution?
7. If it is a binomial distribution, does that
Mean = 4.29 Std. dev. = 1.56492
X | P(X) | Cum. prob. |
0 | 0.00371 | 0.00371 |
1 | 0.02784 | 0.03155 |
2 | 0.09396 | 0.12552 |
3 | 0.18793 | 0.31344 |
4 | 0.24665 | 0.56009 |
5 | 0.22199 | 0.78208 |
6 | 0.13874 | 0.92082 |
7 | 0.05946 | 0.98028 |
8 | 0.01672 | 0.99700 |
9 | 0.00279 | 0.99979 |
10 | 0.00021 | 1.00000 |
a.

The probability that the person is likely to eat at all three restaurants with unsanitary conditions.
Answer to Problem 1AC
The probability the person is likely to eat at all three restaurants with unsanitary conditions is 0.186.
Explanation of Solution
Given info:
A person is planning to eat outside 10 times during a vacation. Health officials checks the sanitary condition of restaurant and found that every 3 out of 7 restaurants checked was having an unsatisfactory health conditions.
Calculation:
Define the random variable x as the number of restaurants with unsanitary conditions. Here, the total number of restaurants are (n) is 10 and each restaurant is independent from other restaurants. Also, there are two possible outcomes (having an unsanitary conditions or didn’t have an unsanitary conditions) and the probability of that the selected restaurant having an unsanitary conditions gives the probability (p)
The binomial distribution formula is,
Where, n is the number of trials, x is the number of successes among n trials, p is the probability of success and q is the probability of failure.
Substitute n as 10, p as 0.43, q as
Thus, the probability the person is likely to eat at all three restaurants with unsanitary conditions is 0.186.
b.

The probability that the person is likely to eat at four or five restaurants with unsanitary conditions.
Answer to Problem 1AC
The probability the person is likely to eat at four or five restaurants with unsanitary conditions is 0.469.
Explanation of Solution
Here, “Eating at four or five restaurants with unsanitary conditions gives the values of X as 4 and 5.
Substitute n as 10, p as 0.43, q as
Thus, the probability the person is likely to eat at four or five restaurants with unsanitary conditions is 0.469.
c.

To explain: The way to compute the probability of eating in at least one restaurant with unsanitary conditions.
To find: The probability of eating in at least one restaurant with unsanitary conditions.
Answer to Problem 1AC
The way to compute the probability of eating in at least one restaurant with unsanitary conditions is given below:
Eating in at least one restaurant is same as eating in 1 or more than 1 restaurants.
The probability of eating in at least one restaurant with unsanitary conditions is 0.9964.
Explanation of Solution
Calculation:
Substitute n as 10, p as 0.43, q as
=0.9964
Thus, the probability of eating in at least one restaurant is 0.9964.
d.

The most likely number that could occur in the given experiment.
Answer to Problem 1AC
The most likely number that could occur in the given experiment is the event of eating in 4 restaurants with unsanitary conditions.
Explanation of Solution
Calculation:
Software procedure:
Software procedure for calculating the probability is given below:
- Choose Calc > Probability Distributions > Binomial Distribution.
- Choose Probability.
- Enter Number of trials as 10 and Event probability as 0.43.
- In Input columns, enter the column containing the values 0, 1, 2, 3,…10.
- Click OK.
Output obtained from MINITAB is given below:
Justification:
From the MINITAB output it can be observed that the probability of eating in 4 restaurants has the highest probability of 0.2462.
The probability for 4 restaurants is the highest, but the expected number of restaurants that a person would eat is
e.

To find: The variability of the data around the most likely number.
Answer to Problem 1AC
The variability of the data around the most likely number would be 1.565 restaurants.
Explanation of Solution
Calculation:
Standard deviation:
Substitute n as 10, p as 0.43 and q as
Thus, the variability of the data around the most likely number would be 1.565 restaurants.
f.

To justify: The reason for identifying the given experiment as binomial.
Answer to Problem 1AC
The given experiment satisfies all the “requirements of binomial distribution”.
Explanation of Solution
Justification:
Requirements of binomial distribution:
- There will be a fixed number of trials.
- There are only two possible outcomes (success and failure).
- The probability of success remains constant.
- The outcomes obtained from each trial are independent of one another.
Here, the number of restaurants is 10 and it gives the fixed number of trials, there are only two possible outcomes either a restaurant might have unsanitary condition or a restaurant might not have unsanitary condition. The probability of that the selected restaurant having an unsanitary conditions gives the probability (p)
Thus, the given experiment is a binomial distribution.
g.

To check: Whether the mean of the likelihood of success is always 50%.
Answer to Problem 1AC
The mean of the likelihood of success will vary from situation to situation.
Explanation of Solution
Given info:
Use the computer generated table for checking.
Justification:
In binomial distribution the probability of success remains constant and it is 50% but it varies for situation to situation. Just having two outcomes will not assurance for equal probabilities of success.
Want to see more full solutions like this?
Chapter 5 Solutions
Elementary Statistics: A Step By Step Approach
Additional Math Textbook Solutions
Elementary Statistics: Picturing the World (7th Edition)
Introductory Statistics
Precalculus: A Unit Circle Approach (3rd Edition)
College Algebra (Collegiate Math)
Elementary Statistics ( 3rd International Edition ) Isbn:9781260092561
Thinking Mathematically (6th Edition)
- This problem is based on the fundamental option pricing formula for the continuous-time model developed in class, namely the value at time 0 of an option with maturity T and payoff F is given by: We consider the two options below: Fo= -rT = e Eq[F]. 1 A. An option with which you must buy a share of stock at expiration T = 1 for strike price K = So. B. An option with which you must buy a share of stock at expiration T = 1 for strike price K given by T K = T St dt. (Note that both options can have negative payoffs.) We use the continuous-time Black- Scholes model to price these options. Assume that the interest rate on the money market is r. (a) Using the fundamental option pricing formula, find the price of option A. (Hint: use the martingale properties developed in the lectures for the stock price process in order to calculate the expectations.) (b) Using the fundamental option pricing formula, find the price of option B. (c) Assuming the interest rate is very small (r ~0), use Taylor…arrow_forwardDiscuss and explain in the picturearrow_forwardBob and Teresa each collect their own samples to test the same hypothesis. Bob’s p-value turns out to be 0.05, and Teresa’s turns out to be 0.01. Why don’t Bob and Teresa get the same p-values? Who has stronger evidence against the null hypothesis: Bob or Teresa?arrow_forward
- Review a classmate's Main Post. 1. State if you agree or disagree with the choices made for additional analysis that can be done beyond the frequency table. 2. Choose a measure of central tendency (mean, median, mode) that you would like to compute with the data beyond the frequency table. Complete either a or b below. a. Explain how that analysis can help you understand the data better. b. If you are currently unable to do that analysis, what do you think you could do to make it possible? If you do not think you can do anything, explain why it is not possible.arrow_forward0|0|0|0 - Consider the time series X₁ and Y₁ = (I – B)² (I – B³)Xt. What transformations were performed on Xt to obtain Yt? seasonal difference of order 2 simple difference of order 5 seasonal difference of order 1 seasonal difference of order 5 simple difference of order 2arrow_forwardCalculate the 90% confidence interval for the population mean difference using the data in the attached image. I need to see where I went wrong.arrow_forward
- Microsoft Excel snapshot for random sampling: Also note the formula used for the last column 02 x✓ fx =INDEX(5852:58551, RANK(C2, $C$2:$C$51)) A B 1 No. States 2 1 ALABAMA Rand No. 0.925957526 3 2 ALASKA 0.372999976 4 3 ARIZONA 0.941323044 5 4 ARKANSAS 0.071266381 Random Sample CALIFORNIA NORTH CAROLINA ARKANSAS WASHINGTON G7 Microsoft Excel snapshot for systematic sampling: xfx INDEX(SD52:50551, F7) A B E F G 1 No. States Rand No. Random Sample population 50 2 1 ALABAMA 0.5296685 NEW HAMPSHIRE sample 10 3 2 ALASKA 0.4493186 OKLAHOMA k 5 4 3 ARIZONA 0.707914 KANSAS 5 4 ARKANSAS 0.4831379 NORTH DAKOTA 6 5 CALIFORNIA 0.7277162 INDIANA Random Sample Sample Name 7 6 COLORADO 0.5865002 MISSISSIPPI 8 7:ONNECTICU 0.7640596 ILLINOIS 9 8 DELAWARE 0.5783029 MISSOURI 525 10 15 INDIANA MARYLAND COLORADOarrow_forwardSuppose the Internal Revenue Service reported that the mean tax refund for the year 2022 was $3401. Assume the standard deviation is $82.5 and that the amounts refunded follow a normal probability distribution. Solve the following three parts? (For the answer to question 14, 15, and 16, start with making a bell curve. Identify on the bell curve where is mean, X, and area(s) to be determined. 1.What percent of the refunds are more than $3,500? 2. What percent of the refunds are more than $3500 but less than $3579? 3. What percent of the refunds are more than $3325 but less than $3579?arrow_forwardA normal distribution has a mean of 50 and a standard deviation of 4. Solve the following three parts? 1. Compute the probability of a value between 44.0 and 55.0. (The question requires finding probability value between 44 and 55. Solve it in 3 steps. In the first step, use the above formula and x = 44, calculate probability value. In the second step repeat the first step with the only difference that x=55. In the third step, subtract the answer of the first part from the answer of the second part.) 2. Compute the probability of a value greater than 55.0. Use the same formula, x=55 and subtract the answer from 1. 3. Compute the probability of a value between 52.0 and 55.0. (The question requires finding probability value between 52 and 55. Solve it in 3 steps. In the first step, use the above formula and x = 52, calculate probability value. In the second step repeat the first step with the only difference that x=55. In the third step, subtract the answer of the first part from the…arrow_forward
- If a uniform distribution is defined over the interval from 6 to 10, then answer the followings: What is the mean of this uniform distribution? Show that the probability of any value between 6 and 10 is equal to 1.0 Find the probability of a value more than 7. Find the probability of a value between 7 and 9. The closing price of Schnur Sporting Goods Inc. common stock is uniformly distributed between $20 and $30 per share. What is the probability that the stock price will be: More than $27? Less than or equal to $24? The April rainfall in Flagstaff, Arizona, follows a uniform distribution between 0.5 and 3.00 inches. What is the mean amount of rainfall for the month? What is the probability of less than an inch of rain for the month? What is the probability of exactly 1.00 inch of rain? What is the probability of more than 1.50 inches of rain for the month? The best way to solve this problem is begin by a step by step creating a chart. Clearly mark the range, identifying the…arrow_forwardClient 1 Weight before diet (pounds) Weight after diet (pounds) 128 120 2 131 123 3 140 141 4 178 170 5 121 118 6 136 136 7 118 121 8 136 127arrow_forwardClient 1 Weight before diet (pounds) Weight after diet (pounds) 128 120 2 131 123 3 140 141 4 178 170 5 121 118 6 136 136 7 118 121 8 136 127 a) Determine the mean change in patient weight from before to after the diet (after – before). What is the 95% confidence interval of this mean difference?arrow_forward
- Big Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin HarcourtHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning




