FUNDAMENTALS OF FLUID MECHANICS
8th Edition
ISBN: 9781119571490
Author: GERHART
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 5.2, Problem 73P
(a)
To determine
The thrust developed by the exhaust gas is
(b)
To determine
The thrust developed by the exhaust gas.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Auto Controls
Design a PID controller for thefollowing system so that the modified system satisfies the followingspecifications : 1. settling time ,ts = 1.96 s and % Overshoot Mp = 70.7 %
Assume a non-dominant pole at s = -15 to solve the problem
The plot the compensated andThen plot the uncompensated system in MATLAB.
what can you see from the plot ? what is your observation ?
Fourth year
Monthly exam\3
2024-2025
Power plant
Time: 1 Hr
Q1. A gas turbine power plant operates on a modified Brayton cycle consisting
of two-stage compression with intercooling to the initial temperature
between stages, two-stage expansion with reheating to the maximum cycle
temperature, and two regenerative heat exchangers.
The following data is given:
Inlet air temperature: 300 K
Maximum cycle temperature: 1400 K
Pressure ratio across each compressor stage: 4
Pressure ratio across each turbine stage: 4
Isentropic efficiency of compressors and turbines: 85%
Effectiveness of each regenerator: 80%
a) Draw a schematic and T-s diagram of the cycle.
b) Determine the thermal efficiency of the cycle.
c) Calculate the net specific work output (in kJ/kg).
d) Discuss the impact of regenerators on the cycle performance.
Examiner
Prof. Dr. Adil Al-Kumait
Auto Controls
The figure is a schematic diagram of an aircraft elevator control system. The input to the systemin the deflection angle of the control lever , and the output is the elevator angle phi.show that for each angle theta of the control lever ,there is a corresponding elevator angle phi.
Then find Y(s)/theta(s) and simplify the resulting transfer function . Also note from the diagram that y and phi is related
Chapter 5 Solutions
FUNDAMENTALS OF FLUID MECHANICS
Ch. 5.1 - Prob. 1PCh. 5.1 - An incompressible fluid flows horizontally in the...Ch. 5.1 - Water flows steadily through the horizontal piping...Ch. 5.1 - Water flows out through a set of thin, closely...Ch. 5.1 - Estimate the rate (in gal/hr) that your car uses...Ch. 5.1 - The pump shown in Fig. P5.6 produces a steady flow...Ch. 5.1 - The fluid axial velocities shown in Fig. P5.7 are...Ch. 5.1 - The human circulatory system consists of a complex...Ch. 5.1 - Air flows steadily between two cross sections in a...Ch. 5.1 - A hydraulic jump (see Video V10.11) is in place...
Ch. 5.1 - A woman is emptying her aquarium at a steady rate...Ch. 5.1 - An evaporative cooling tower (see Fig. P5.12) is...Ch. 5.1 - At cruise conditions, air flows into a jet engine...Ch. 5.1 - Water at 0.1 m3/s and alcohol (SG = 0.8) at 0.3...Ch. 5.1 - In the vortex tube shown in Fig. P5.15, air enters...Ch. 5.1 - Molten plastic at a temperature of 510 °F is...Ch. 5.1 - A water jet pump (see Fig. P5.17) involves a jet...Ch. 5.1 - To measure the mass flowrate of air through a...Ch. 5.1 - Two rivers merge to form a larger river as shown...Ch. 5.1 - Various types of attachments can be used with the...Ch. 5.1 - An appropriate turbulent pipe flow velocity...Ch. 5.1 - As shown in Fig. P5.22, at the entrance to a...Ch. 5.1 - Prob. 23PCh. 5.1 - Oil for lubricating the thrust bearing shown in...Ch. 5.1 - Flow of a viscous fluid over a flat plate surface...Ch. 5.1 - Air at standard conditions enters the compressor...Ch. 5.1 - Estimate the time required to fill with water a...Ch. 5.1 - For an automobile moving along a highway, describe...Ch. 5.1 - A water jet leaves a fixed nozzle with a velocity...Ch. 5.1 - A hypodermic syringe (see Fig. P5.30) is used to...Ch. 5.1 - Figure P5.31 shows a two-reservoir water supply...Ch. 5.1 - The Hoover Dam (see Video V2.4) backs up...Ch. 5.1 - Storm sewer backup causes your basement to flood...Ch. 5.1 - (See The Wide World of Fluids article “‘Green’...Ch. 5.2 - Prob. 35PCh. 5.2 - When a baseball player catches a ball, the force...Ch. 5.2 - Find the horizontal and vertical forces to hold...Ch. 5.2 - Water flows through a horizontal bend and...Ch. 5.2 - Find the magnitude of the force F required to hold...Ch. 5.2 - Water enters the horizontal, circular...Ch. 5.2 - A truck carrying chickens is too heavy for a...Ch. 5.2 - Exhaust (assumed to have the properties of...Ch. 5.2 - Air at T1 = 300 K, p1 = 303 kPa, and V1 = 0.5 m/s...Ch. 5.2 - Water flows steadily from a tank mounted on a cart...Ch. 5.2 - Determine the magnitude and direction of the...Ch. 5.2 - Figure P5.46 shows a lateral pipe fitting. This...Ch. 5.2 - Water flows steadily between fixed vanes, as shown...Ch. 5.2 - The hydraulic dredge shown in Fig. P5.48 is used...Ch. 5.2 - A static thrust stand is to be designed for...Ch. 5.2 - A vertical jet of water leaves a nozzle at a speed...Ch. 5.2 - A horizontal, circular cross-sectional jet of air...Ch. 5.2 - Calculate the pressure change (p2 − p1) for the...Ch. 5.2 - Air flows into the atmosphere from a nozzle and...Ch. 5.2 - Water flows from a large tank into a dish as shown...Ch. 5.2 - Figure P5.55 shows the configuration of the center...Ch. 5.2 - The plate shown in Fig. P5.56 is 0.5 m wide...Ch. 5.2 - Two water jets of equal size and speed strike each...Ch. 5.2 - Figure P5.58 shows coal being dropped from a...Ch. 5.2 - Determine the magnitude of the horizontal...Ch. 5.2 - Water flows steadily into and out of a tank that...Ch. 5.2 - The rocket shown in Fig. P5.61 is held stationary...Ch. 5.2 -
Air discharges from a 2-in.-diameter nozzle and...Ch. 5.2 - Water is sprayed radially outward over 180° as...Ch. 5.2 - A sheet of water of uniform thickness (h = 0.01 m)...Ch. 5.2 - The results of a wind tunnel test to determine the...Ch. 5.2 - A variable mesh screen produces a linear and...Ch. 5.2 - Prob. 67PCh. 5.2 - Prob. 68PCh. 5.2 - Prob. 69PCh. 5.2 - A Pelton wheel vane directs a horizontal, circular...Ch. 5.2 - Prob. 71PCh. 5.2 - Thrust vector control is a technique that can be...Ch. 5.2 - Prob. 73PCh. 5.2 - Prob. 74PCh. 5.2 - Prob. 75PCh. 5.2 - Prob. 76PCh. 5.2 - (See The Wide World of Fluids article titled “Bow...Ch. 5.2 - Water flows from a two-dimensional open channel...Ch. 5.2 - Prob. 79PCh. 5.2 - A snowplow mounted on a truck clears a path 12 ft...Ch. 5.2 - Prob. 81PCh. 5.2 - Water at 60 °F is flowing through the 2-in. steel...Ch. 5.2 - Five liters/s of water enter the rotor shown in...Ch. 5.2 - Figure P5.84 shows a simplified sketch of a...Ch. 5.2 - The hydraulic turbine shown in Fig. P5.85 has a 10...Ch. 5.2 - Prob. 86PCh. 5.2 -
Calculate the torque required to drive the pump...Ch. 5.2 - Prob. 88PCh. 5.2 - Prob. 89PCh. 5.2 - Prob. 90PCh. 5.3 - Distinguish between shaft work and other kinds of...Ch. 5.3 - Prob. 92PCh. 5.3 - A horizontal Venturi flow meter consists of a...Ch. 5.3 - Figure P5.94 shows the mixing of two streams. The...Ch. 5.3 - Liquid water at 40 °F flows down a vertical,...Ch. 5.3 - A simplified schematic drawing of the carburetor...Ch. 5.3 - Oil (SG = 0.9) flows downward through a vertical...Ch. 5.3 - An incompressible liquid flows steadily along the...Ch. 5.3 - Prob. 99PCh. 5.3 - A water siphon having a constant inside diameter...Ch. 5.3 - Figure P5.101 shows a test rig for evaluating the...Ch. 5.3 - For the 180° elbow and nozzle flow shown in Fig....Ch. 5.3 - An automobile engine will work best when the back...Ch. 5.3 - (See The Wide World of Fluids article titled...Ch. 5.3 - Based on flowrate and pressure rise information,...Ch. 5.3 - Oil (SG = 0.88) flows in an inclined pipe at a...Ch. 5.3 - The pumper truck shown in Fig. P5.107 is to...Ch. 5.3 - The hydroelectric turbine shown in Fig. P5.108...Ch. 5.3 - A pump is to move water from a lake into a large,...Ch. 5.3 - Water is pumped from the tank shown in Fig....Ch. 5.3 - Water is pumped steadily through the apparatus...Ch. 5.3 - Water is pumped from the large tank shown in Fig....Ch. 5.3 - Water flows by gravity from one lake to another as...Ch. 5.3 - The turbine shown in Fig. P5.114 develops 100 hp...Ch. 5.3 - Prob. 115PCh. 5.3 - Water is to be moved from one large reservoir to...Ch. 5.3 - Determine the volume flow rate and minimum power...Ch. 5.3 - Prob. 118PCh. 5.3 - Water is to be pumped from the large tank shown in...Ch. 5.3 - Prob. 120PCh. 5.3 - When the pump shown in Fig. P5.121 is stopped,...Ch. 5.3 - Air flows past an object in a pipe of 2-m diameter...Ch. 5.3 - Water flows steadily down the inclined pipe as...Ch. 5.3 - When fluid flows through an abrupt expansion as...Ch. 5.3 - Water (60 °F) flows through an annular space...Ch. 5.3 - Find the acceleration of the cart shown in Fig....Ch. 5.3 - Prob. 128PCh. 5.3 - Water flows vertically upward in a circular cross-...Ch. 5.3 - Prob. 130PCh. 5.3 - The cross-sectional area of a rectangular duct is...Ch. 5.3 - A small fan moves air at a mass flowrate of 0.004...Ch. 5.3 - Air enters a radial blower with zero angular...Ch. 5.3 - Water enters a pump impeller radially. It leaves...Ch. 5.3 - Water enters an axial-flow turbine rotor with an...Ch. 5.3 - An inward flow radial turbine (see Fig. P5.136)...Ch. 5.5 - Prob. 1LLPCh. 5.5 - Prob. 2LLPCh. 5.5 - Prob. 3LLPCh. 5.5 - Prob. 4LLP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Liquid hexane flows through a counter flow heat exchanger at 5 m3/h as shown in Figure E5.5.The hexane enters the heat exchanger at 90°C. Water, flowing at 5 m3/h, is used to cool the hexane.The water enters the heat exchanger at 15°C. The UA product of the heat exchanger is found to be2.7 kW/K. Determine the outlet temperatures of the hot and cold fluids and the heat transfer ratebetween them using LMTD method.arrow_forwardDetermine the fluid outlet temperatures and the heat transfer rate for the counter flow heatexchanger described in Problem 3 using the ε-NTU model. Assume that the properties can beevaluated at the given fluid inlet temperatures.arrow_forwardSection View - practice Homework 0.5000 3.0000 2,0000 1.0000arrow_forward
- Drawing the section view for the following multiview drawing AutoCAD you see the section pratice I need to show how to autocadarrow_forwardA boiler with 80% efficiency produces steam at 40bar and 500 C at a rate of 1.128kg/s. The temperature of the feed water is raised from 25 C to 125 C in the economizer and the ambient air is drawn to the boiler at a rate of 2.70 kg/s at 16 C. The flue gases leave the chimney at rate of 3 kg/s at 150 C with specific heat of 1.01 kJ/kg.K. The dryness fraction of steam collected in the steam drum is 0.95. 1- Determine the heat value of the fuel. 2- The equivalence evaporation. 3- Draw the heat balance sheet.arrow_forwardA rotating shaft is made of 42 mm by 4 mm thick cold-drawn round steel tubing and has a 6 mm diameter hole drilled transversely through it. The shaft is subjected to a pulsating torque fluctuating from 20 to 160 Nm and a completely reversed bending moment of 200 Nm. The steel tubing has a minimum strength of Sut = 410 MPa (60 ksi). The static stress-concentration factor for the hole is 2.4 for bending and 1.9 for torsion. The maximum operating temperature is 400˚C and a reliability of 99.9% is to be assumed. Find the factor of safety for infinite life using the modified Goodman failure criterion.arrow_forward
- I need help with a MATLAB code. This code just keeps running and does not give me any plots. I even reduced the tolerance from 1e-9 to 1e-6. Can you help me fix this? Please make sure your solution runs. % Initial Conditions rev = 0:0.001:2; g1 = deg2rad(1); g2 = deg2rad(3); g3 = deg2rad(6); g4 = deg2rad(30); g0 = deg2rad(0); Z0 = 0; w0 = [0; Z0*cos(g0); -Z0*sin(g0)]; Z1 = 5; w1 = [0; Z1*cos(g1); -Z1*sin(g1)]; Z2 = 11; w2 = [0; Z2*cos(g2); -Z2*sin(g2)]; [v3, psi3, eta3] = Nut_angle(Z2, g2, w2); plot(v3, psi3) function dwedt = K_DDE(~, w_en) % Extracting the initial condtions to a variable % Extracting the initial condtions to a variable w = w_en(1:3); e = w_en(4:7); Z = w_en(8); I = 0.060214; J = 0.015707; x = (J/I) - 1; y = Z - 1; s = Z; % Kinematic Differential Equations dedt = zeros(4,1); dedt(1) = pi*(e(3)*(s-w(2)-1) + e(2)*w(3) + e(4)*w(1)); dedt(2) = pi*(e(4)*(w(2)-1-s) + e(3)*w(1) - e(1)*w(3)); dedt(3) = pi*(-e(1)*(s-w(2)-1) - e(2)*w(1) + e(4)*w(3));…arrow_forwardalpha 1 is not zero alpha 1 can equal alpha 2 use velocity triangle to solve for alpha 1 USE MATLAB ONLY provide typed code solve for velocity triangle and dont provide copied answer Turbomachienery . GIven: vx = 185 m/s, flow angle = 60 degrees, (leaving a stator in axial flow) R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3 Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram Use this code for plot % plots Velocity Tri. in Ch4 function plotveltri(al1,al2,al3,b2,b3) S1L = [0 1]; V1x = [0 0]; V1s = [0 1*tand(al3)]; S2L = [2 3]; V2x = [0 0]; V2s = [0 1*tand(al2)]; W2s = [0 1*tand(b2)]; U2x = [3 3]; U2y = [1*tand(b2) 1*tand(al2)]; S3L = [4 5]; V3x = [0 0]; V3r = [0 1*tand(al3)]; W3r = [0 1*tand(b3)]; U3x = [5 5]; U3y = [1*tand(b3) 1*tand(al3)]; plot(S1L,V1x,'k',S1L,V1s,'r',... S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',...…arrow_forward3. Find a basis of eigenvectors and diagonalize. 4 0 -19 7 a. b. 1-42 16 12-20 [21-61arrow_forward
- 2. Find the eigenvalues. Find the corresponding eigenvectors. 6 2 -21 [0 -3 1 3 31 a. 2 5 0 b. 3 0 -6 C. 1 1 0 -2 0 7 L6 6 0 1 1 2. (Hint: λ = = 3)arrow_forwardUSE MATLAB ONLY provide typed code solve for velocity triangle and dont provide copied answer Turbomachienery . GIven: vx = 185 m/s, flow angle = 60 degrees, (leaving a stator in axial flow) R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3 Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram Use this code for plot % plots Velocity Tri. in Ch4 function plotveltri(al1,al2,al3,b2,b3) S1L = [0 1]; V1x = [0 0]; V1s = [0 1*tand(al3)]; S2L = [2 3]; V2x = [0 0]; V2s = [0 1*tand(al2)]; W2s = [0 1*tand(b2)]; U2x = [3 3]; U2y = [1*tand(b2) 1*tand(al2)]; S3L = [4 5]; V3x = [0 0]; V3r = [0 1*tand(al3)]; W3r = [0 1*tand(b3)]; U3x = [5 5]; U3y = [1*tand(b3) 1*tand(al3)]; plot(S1L,V1x,'k',S1L,V1s,'r',... S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',... S3L,V3x,'k',S3L,V3r,'r',S3L,W3r,'b',U3x,U3y,'g',...... 'LineWidth',2,'MarkerSize',10),...…arrow_forwardUSE MATLAB ONLY provide typed code solve for velocity triangle and dont provide copied answer Turbomachienery . GIven: vx = 185 m/s, flow angle = 60 degrees, R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3 Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram Use this code for plot % plots Velocity Tri. in Ch4 function plotveltri(al1,al2,al3,b2,b3) S1L = [0 1]; V1x = [0 0]; V1s = [0 1*tand(al3)]; S2L = [2 3]; V2x = [0 0]; V2s = [0 1*tand(al2)]; W2s = [0 1*tand(b2)]; U2x = [3 3]; U2y = [1*tand(b2) 1*tand(al2)]; S3L = [4 5]; V3x = [0 0]; V3r = [0 1*tand(al3)]; W3r = [0 1*tand(b3)]; U3x = [5 5]; U3y = [1*tand(b3) 1*tand(al3)]; plot(S1L,V1x,'k',S1L,V1s,'r',... S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',... S3L,V3x,'k',S3L,V3r,'r',S3L,W3r,'b',U3x,U3y,'g',...... 'LineWidth',2,'MarkerSize',10),... axis([-1 6 -4 4]), ...…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY