Egyptian mathematics had a unique way of writing fractions as sums of unit fractions – that is, fractions of the form 1 n . For example, the fraction 2 9 could be written as 1 6 + 1 18 and also as 1 5 + 1 45 . They would not represent a number like 2 3 as 1 3 + 1 3 ; they would use two different unit fractions. Unit fractions were written by placing the symbol , which looked somewhat like an eye, over the numeral. For example, 1 3 could be written as . In exercises 79 − 82 , write the given fractions as the sum of unit fractions, using our common notation rather than the cumbersome Egyptian notation. (There may be several correct answers but we will give only one.) 2 3
Egyptian mathematics had a unique way of writing fractions as sums of unit fractions – that is, fractions of the form 1 n . For example, the fraction 2 9 could be written as 1 6 + 1 18 and also as 1 5 + 1 45 . They would not represent a number like 2 3 as 1 3 + 1 3 ; they would use two different unit fractions. Unit fractions were written by placing the symbol , which looked somewhat like an eye, over the numeral. For example, 1 3 could be written as . In exercises 79 − 82 , write the given fractions as the sum of unit fractions, using our common notation rather than the cumbersome Egyptian notation. (There may be several correct answers but we will give only one.) 2 3
Solution Summary: The author explains how to write the tion 23 as a sum of unit tions by finding the prime factors of the denominator.
Egyptian mathematics had a unique way of writing fractions as sums of unit fractions – that is, fractions of the form
1
n
. For example, the fraction
2
9
could be written as
1
6
+
1
18
and also as
1
5
+
1
45
. They would not represent a number like
2
3
as
1
3
+
1
3
; they would use two different unit fractions. Unit fractions were written by placing the symbol , which looked somewhat like an eye, over the numeral. For example,
1
3
could be written as. In exercises
79
−
82
, write the given fractions as the sum of unit fractions, using our common notation rather than the cumbersome Egyptian notation. (There may be several correct answers but we will give only one.)
enter | Infinite Camp
ilc 8.3 End-of-Unit Assessment, Op x
Pride is the Devil - Google Drive x +
2 sdphiladelphia.ilclassroom.com/assignments/7FQ5923/lesson?card=806642
3
Problem 2
A successful music app tracked the number of song downloads each day for a month for 4 music artists, represented by lines l, j, m,
and d over the course of a month. Which line represents an artist whose downloads remained constant over the month?
Select the correct choice.
=
Sidebar
Tools
M
45
song downloads
days
d
1
2
3
4
5
6
7
8
00
8
m
l
RA
9
>
КУ
Fullscreen
G
Save & Exit
De
☆
Q/Determine the set of points at which
-
f(z) = 622 2≥ - 4i/z12
i
and
differentiable
analytice
is:
sy = f(x)
+
+
+
+
+
+
+
+
+
X
3
4
5
7
8
9
The function of shown in the figure is continuous on the closed interval [0, 9] and differentiable on the open
interval (0, 9). Which of the following points satisfies conclusions of both the Intermediate Value Theorem
and the Mean Value Theorem for f on the closed interval [0, 9] ?
(A
A
B
B
C
D
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.