
Differential Equations with Boundary-Value Problems (MindTap Course List)
9th Edition
ISBN: 9781305965799
Author: Dennis G. Zill
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5.1, Problem 39E
Spring/Mass Systems: Driven Motion
A mass m is attached to the end of a spring whose constant is k. After the mass reaches equilibrium, its support begins to oscillate vertically about a horizontal line L according to a formula h(t). The value of h represents the distance in feet measured from L. See Figure 5.1.22.
- (a) Determine the differential equation of motion if the entire system moves through a medium offering a damping force that is numerically equal to β(dx/dt).
- (b) Solve the differential equation in part (a) if the spring is stretched 4 feet by a mass weighing 16 pounds and β = 2, h(t) = 5 cos t, x(0) = x′(0) = 0.
FIGURE 5.1.22 Oscillating support in Problem 39
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
In Exercises 62-64, sketch a reasonable graph that models the given situation.
The number of hours of daylight per day in your hometown over a two-year period
The motion of a diving board vibrating 10 inches in each direction per second just after someone has dived off
The distance of a rotating beam of light from a point on a wall
8
L
8
e
ipx dx
The manager of a fleet of automobiles is testing
two brands of radial tires and assigns one tire of
each brand at random to the two rear wheels of
eight cars and runs the cars until the tires wear
out. The data (in kilometers) follow.
CAR BRAND1
BRAND2
DIFFERENCE = (BRAND1 - BF
1
36,925 33,018
3,907
2
45,300 43,280
2,020
3
36,240
35,500
740
4
32,100
31,200
900
5
37,210
37,015
195
6
48,360
46,800
1,560
7
38,200
37,810
390
8
33,500
33,215
285
Chapter 5 Solutions
Differential Equations with Boundary-Value Problems (MindTap Course List)
Ch. 5.1 - 5.1.1 Spring/Mass systems: Free Undamped Motion A...Ch. 5.1 - Spring/Mass Systems: Free Undamped Motion A...Ch. 5.1 - Spring/Mass Systems: Free Undamped Motion A mass...Ch. 5.1 - Spring/Mass Systems: Free Undamped Motion...Ch. 5.1 - Spring/Mass Systems: Free Undamped Motion A mass...Ch. 5.1 - Spring/Mass Systems: Free Undamped Motion A force...Ch. 5.1 - Prob. 7ECh. 5.1 - Spring/Mass Systems: Free Undamped Motion A mass...Ch. 5.1 - Prob. 9ECh. 5.1 - 5.1.1Spring/Mass Systems: Free Undamped Motion A...
Ch. 5.1 - A mass weighing 64 pounds stretches a spring 0.32...Ch. 5.1 - A mass of 1 slug is suspended from a spring whose...Ch. 5.1 - Prob. 13ECh. 5.1 - Prob. 14ECh. 5.1 - Prob. 15ECh. 5.1 - Prob. 16ECh. 5.1 - Prob. 17ECh. 5.1 - Prob. 18ECh. 5.1 - Spring/Mass Systems: Free Undamped Motion A model...Ch. 5.1 - Prob. 20ECh. 5.1 - 5.1.2 Spring/Mass systems: Free Damped Motion In...Ch. 5.1 - Spring/Mass Systems: Free Damped Motion In...Ch. 5.1 - Spring/Mass Systems: Free Damped Motion In...Ch. 5.1 - Prob. 24ECh. 5.1 - Spring/Mass System: Free Damped Motion A mass...Ch. 5.1 - Spring/Mass Systems: Free Damped Motion A 4-foot...Ch. 5.1 - A 1-kilogram mass is attached to a spring whose...Ch. 5.1 - Prob. 28ECh. 5.1 - Spring/Mass Systems: Free Damped Motion A force of...Ch. 5.1 - After a mass weighing 10 pounds is attached to a...Ch. 5.1 - Spring/Mass Systems: Free Damped Motion A mass...Ch. 5.1 - f(t)=cos5t+sin2tCh. 5.1 - Spring/Mass Systems: Free Damped Motion A mass...Ch. 5.1 - A mass of 1 slug is attached to a spring whose...Ch. 5.1 - Prob. 35ECh. 5.1 - In Problem 35 determine the equation of motion if...Ch. 5.1 - Spring/Mass Systems: Driven Motion When a mass of...Ch. 5.1 - Spring/Mass Systems: Driven Motion In Problem 37...Ch. 5.1 - Spring/Mass Systems: Driven Motion A mass m is...Ch. 5.1 - A mass of 100 grams is attached to a spring whose...Ch. 5.1 - Spring/Mass Systems: Driven Motion In Problems 41...Ch. 5.1 - In Problems 41 and 42 solve the given...Ch. 5.1 - Series Circuit Analogue (a) Show that the solution...Ch. 5.1 - Compare the result obtained in part (b) of Problem...Ch. 5.1 - (a) Show that x(t) given in part (a) of Problem 43...Ch. 5.1 - Series Circuit Analogue Find the charge on the...Ch. 5.1 - Series Circuit Analogue Find the charge on the...Ch. 5.1 - Series Circuit Analogue In Problems 51 and 52 find...Ch. 5.1 - In Problems 51 and 52 find the charge on the...Ch. 5.1 - Prob. 53ECh. 5.1 - Prob. 54ECh. 5.1 - Prob. 55ECh. 5.1 - Find the steady-state current in an LRC-series...Ch. 5.1 - Prob. 57ECh. 5.1 - Prob. 58ECh. 5.1 - Prob. 59ECh. 5.1 - Series Circuit Analogue Find the charge on the...Ch. 5.1 - Prob. 61ECh. 5.1 - Prob. 62ECh. 5.2 - (a) The beam is embedded at its left end and free...Ch. 5.2 - (a) The beam is simply supported at both ends, and...Ch. 5.2 - (a) The beam is embedded at its left end and...Ch. 5.2 - (a) The beam is embedded at its left end and...Ch. 5.2 - Prob. 6ECh. 5.2 - A cantilever beam of length L is embedded at its...Ch. 5.2 - Prob. 8ECh. 5.2 - Prob. 9ECh. 5.2 - In Problems 920 find the eigenvalues and...Ch. 5.2 - In Problems 920 find the eigenvalues and...Ch. 5.2 - In Problems 920 find the eigenvalues and...Ch. 5.2 - Prob. 13ECh. 5.2 - In Problems 920 find the eigenvalues and...Ch. 5.2 - In Problems 920 find the eigenvalues and...Ch. 5.2 - Prob. 16ECh. 5.2 - Prob. 17ECh. 5.2 - Prob. 18ECh. 5.2 - Eigenvalues and Eigenfunctions In Problems 920...Ch. 5.2 - Eigenvalues and Eigenfunctions In Problems 920...Ch. 5.2 - Prob. 21ECh. 5.2 - Prob. 22ECh. 5.2 - Prob. 23ECh. 5.2 - The critical loads of thin columns depend on the...Ch. 5.2 - Prob. 25ECh. 5.2 - Rotating String Consider the boundary-value...Ch. 5.2 - Prob. 28ECh. 5.2 - Additional Boundary-Value Problems Temperature in...Ch. 5.2 - Prob. 30ECh. 5.2 - Prob. 31ECh. 5.2 - Prob. 32ECh. 5.2 - Prob. 33ECh. 5.2 - Damped Motion Assume that the model for the...Ch. 5.2 - Additional Boundary-Value Problems y + 16y = 0,...Ch. 5.2 - Additional Boundary-Value Problems y + 16y = 0,...Ch. 5.2 - Consider the boundary-value problem...Ch. 5.2 - Show that the eigenvalues and eigenfunctions of...Ch. 5.3 - Find a linearization of the differential equation...Ch. 5.3 - Prob. 14ECh. 5.3 - Prob. 15ECh. 5.3 - A uniform chain of length L, measured in feet, is...Ch. 5.3 - Pursuit curve In a naval exercise a ship S1 is...Ch. 5.3 - Pursuit curve In another naval exercise a...Ch. 5.3 - Prob. 19ECh. 5.3 - Prob. 21ECh. 5 - If a mass weighing 10 pounds stretches a spring...Ch. 5 - Prob. 2RECh. 5 - Prob. 3RECh. 5 - Pure resonance cannot take place in the presence...Ch. 5 - Prob. 5RECh. 5 - Prob. 6RECh. 5 - Prob. 7RECh. 5 - Prob. 8RECh. 5 - Prob. 9RECh. 5 - Prob. 10RECh. 5 - Prob. 11RECh. 5 - Prob. 12RECh. 5 - Prob. 13RECh. 5 - Prob. 14RECh. 5 - Prob. 15RECh. 5 - Prob. 16RECh. 5 - A mass weighing 4 pounds stretches a spring 18...Ch. 5 - Find a particular solution for x + 2x + 2x = A,...Ch. 5 - Prob. 19RECh. 5 - (a) A mass weighing W pounds stretches a spring 12...Ch. 5 - A series circuit contains an inductance of L= 1 h,...Ch. 5 - Prob. 22RECh. 5 - Consider the boundary-value problem...Ch. 5 - Prob. 25RECh. 5 - Prob. 26RECh. 5 - Suppose the mass m in the spring/mass system in...Ch. 5 - Prob. 28RECh. 5 - Prob. 29RECh. 5 - Spring pendulum The rotational form of Newtons...Ch. 5 - Prob. 31RECh. 5 - Galloping Gertie Bridges are good examples of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Diabetes and obesity are serious health concerns in the United States and much of the developed world. Measuring the amount of body fat a person carries is one way to monitor weight control progress, but measuring it accurately involves either expensive X-ray equipment or a pool in which to dunk the subject. Instead body mass index (BMI) is often used as a proxy for body fat because it is easy to measure: BMI = mass(kg)/(height(m))² = 703 mass(lb)/(height(in))². In a study of 15 men at TXST, both BMI and body fat were measured. Researchers imported the data into statistical software for analysis. A few values are missing from the output. Complete the table by filling in the missing values. Model Summary S R-sq % (three decimal places) (two decimal places. e.g. 12.3456%, enter 12.35) Analysis of Variance Source Model Error Total DF SS MS F P 17.600 0.001 DF: whole numbers SS or MS; three decimal places 34.810 Does a simple linear regression model seem reasonable in this situation?…arrow_forwardThe use of electromyostimulation (EMS) as a method to train healthy skeletal muscle is studied. EMS sessions consisted of 30 contractions (4-second duration, 85 Hz) and were carried out three times per week for three weeks on 17 ice hockey players. The 10-meter skating performance test showed a standard deviation of 0.90 seconds. Is there strong evidence to conclude that the standard deviation of performance time exceeds the historical value of 0.75 seconds? Use a = 0.05.arrow_forwardOne-Sample Z Test Test of М = 45 vs not === 45 The assumed standard deviation = 2.8 VARIABLE N MEAN STDEV SE MEAN X Instructions: 46.377 2.500 0.626 95% CI (,) Fill in the missing values. N: Round the answer to the nearest whole number. Cl: Round to three decimal places. Z: Round to two decimal places. P: Round to three decimal places.arrow_forward
- Need detailed report solution without AI and Chatgpt,arrow_forwardBased on the software output, write the fitted simple linear regression equation. Coefficients Term Coef SE Coef T-Value P-Value Constant 3.20 1.92 1.67 0.237 [Select] y= 0.600 0.566 1.06 0.400 +[Select] x Does a simple linear regression model seem reasonable in this situation? [Select]arrow_forward30.4. Suppose that f(2) has a pole of order m at zo. Show that f'(z) has a pole of order m + 1 at zo-arrow_forward
- A drink filling machine, when in perfect adjustment, fills the bottles with 8 ounces of drink on an average. Any overfilling or underfilling results in the shutdown and readjustment of the machine. A sample of 20 bottles is selected, and the sample shows an average filling volume of 7.5 ounces. To determine whether the machine is properly adjusted, the correct set of hypotheses Ho: [Select] [Select] H₁: [Select] [Select] > [Select] [Select]arrow_forwardInformation on a packet of seeds claims that 93% of them will germinate. Of the 200 seeds that were planted, only 180 germinated. 95% confidence interval for the true proportion of seeds that germinate based on this sample is (85.8%, 94.2%). Do the data provide evidence against the claim? [Select] The margin of error in the estimate is: [Select] > To keep the margin of error within 3.5% with at least 95% confidence level, the required sample size is: [Select]arrow_forwardThis has to be done advanced mathematics report , also give the code for this. And do not give chatgptarrow_forward
- Business discussarrow_forwardFind the Taylor polynomial T³(×) for the function f centered at the number a. f(x) = xe-2x a = 0 T3(x) =arrow_forward538 Chapter 13 12. Given: Points E(-4, 1), F(2, 3), G(4, 9), and H(-2, 7) a. Show that EFGH is a rhombus. b. Use slopes to verify that the diagonals are perpendicular. 13. Given: Points R(-4, 5), S(-1, 9), T(7, 3) and U(4, -1) a. Show that RSTU is a rectangle. b. Use the distance formula to verify that the diagonals are congruent. 14. Given: Points N(-1, -5), O(0, 0), P(3, 2), and 2(8, 1) a. Show that NOPQ is an isosceles trapezoid. b. Show that the diagonals are congruent. Decide what special type of quadrilateral HIJK is. Then prove that your answer is correct. 15. H(0, 0) 16. H(0, 1) 17. H(7, 5) 18. H(-3, -3) I(5, 0) I(2,-3) 1(8, 3) I(-5, -6) J(7, 9) K(1, 9) J(-2, -1) K(-4, 3) J(0, -1) K(-1, 1) J(4, -5) K(6,-2) 19. Point N(3, - 4) lies on the circle x² + y² = 25. What is the slope of the (Hint: Recall Theorem 9-1.) - line that is tangent to the circle at N? 20. Point P(6, 7) lies on the circle (x + 2)² + (y − 1)² = 100. What is the slope of the line that is tangent to the circle at…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education

Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education

Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON


Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON

Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,

Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY