Conceptual Phy. Sci. - With Access (Custom)
6th Edition
ISBN: 9781323406588
Author: Hewitt
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5, Problem 9RCQ
Why does buoyant force act upward on an object submerged in water?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sky diver of mass 90 kg (with suit and gear) is falling at terminal speed. What is the upward force of air drag, and how do you know?
A car is traveling at top speed on the Bonneville salt flats while attempting a land speed record. The tires exert 25 kN of force in the backward direction on the ground. Why backwards? How large are the forces resisting the forward motion of the car, and why?
A bee strikes a windshield of a car on the freeway and gets crushed. What can you conclude about the force on the bee versus the force on the windshield, and on what principle is this based?
Chapter 5 Solutions
Conceptual Phy. Sci. - With Access (Custom)
Ch. 5 - Give two examples of a fluid.Ch. 5 - What happens to the volume of a loaf of bread that...Ch. 5 - Distinguish between mass density and weight...Ch. 5 - Distinguish between force and pressure. Compare...Ch. 5 - How does the pressure exerted by a liquid change...Ch. 5 - Ignoring the pressure of the atmosphere, if you...Ch. 5 - How does water pressure 1 m below the surface of a...Ch. 5 - If you punch a hole in the side of a container...Ch. 5 - Why does buoyant force act upward on an object...Ch. 5 - How does the volume of a completely submerged...
Ch. 5 - State Archimedes principle.Ch. 5 - What is the difference between being immersed and...Ch. 5 - How does the buoyant force on a fully submerged...Ch. 5 - What is the mass in kilograms of 1 L of water?...Ch. 5 - If a 1-L container is immersed halfway in water,...Ch. 5 - Does the buoyant force on a floating object depend...Ch. 5 - What weight of water is displaced by a 100-ton...Ch. 5 - By how much does the density of air increase when...Ch. 5 - What happens to the air pressure inside a balloon...Ch. 5 - What is the approximate mass in kilograms of a...Ch. 5 - How does the downward pressure of the 76-cm column...Ch. 5 - How does the weight of mercury in a barometer tube...Ch. 5 - Why would a water barometer have to be 13.6 times...Ch. 5 - When you drink liquid through a straw, is it more...Ch. 5 - What happens to the pressure in all parts of a...Ch. 5 - Docs Pascals principle provide a way to get more...Ch. 5 - A balloon that weighs 1 N is suspended in air,...Ch. 5 - Prob. 28RCQCh. 5 - Does Bernoullis principle refer to internal...Ch. 5 - What do peaked roofs, convertible tops, and...Ch. 5 - A 1-m-tall barrel is filled with water (with a...Ch. 5 - Show that the water pressure at the bottom of the...Ch. 5 - The depth of water behind the Hoover Dam is 220 m....Ch. 5 - The top floor of a building is 20 m above the...Ch. 5 - Suppose that you balance a 2-kg ball on the tip of...Ch. 5 - A 12-kg piece of metal displaces 2 L of water when...Ch. 5 - Prob. 52TASCh. 5 - A rectangular barge, 5 m long and 2 m wide, floats...Ch. 5 - Suppose that the barge in the preceding problem...Ch. 5 - A merchant in Kathmandu sells you a 1-kg solid...Ch. 5 - A vacationer floats lazily in the ocean with 90%...Ch. 5 - Your friend of mass 100 kg can just barely float...Ch. 5 - In the hydraulic pistons, shown, the smaller...Ch. 5 - On a perfect fall day, you are hovering at rest at...Ch. 5 - What change in pressure occurs in a party balloon...Ch. 5 - A mountain climber of mass 80 kg ponders the idea...Ch. 5 - Prob. 62TASCh. 5 - The wings of a certain airplane have a total...Ch. 5 - Rank the following from most to least: (a) The...Ch. 5 - Rank, from most to least, the percentage of volume...Ch. 5 - Think about what happens to the volume of an...Ch. 5 - Rank, from greatest to least, the volumes of air...Ch. 5 - Rank, from greatest to least, the buoyant forces...Ch. 5 - Rank, from greatest to least, the amounts of lift...Ch. 5 - When you squeeze a party balloon between your...Ch. 5 - A can of diet soft drink floats in water, whereas...Ch. 5 - The density of a rock doesn't change when it is...Ch. 5 - You know that a sharp knife cuts better than a...Ch. 5 - Which is more likely to hurtbeing stepped on by a...Ch. 5 - Stand on a bathroom scale and read your weight....Ch. 5 - Why are people who are confined to bed less likely...Ch. 5 - Prob. 77ECh. 5 - What common liquid covers more than two-thirds of...Ch. 5 - How much force is needed to push a nearly...Ch. 5 - Why is it inaccurate to say that heavy objects...Ch. 5 - Why does an inflated beach ball pushed beneath the...Ch. 5 - A half-filled bucket of water is on a spring...Ch. 5 - When a wooden block is placed in a beaker that is...Ch. 5 - Why will a block of iron float in mercury but sink...Ch. 5 - Why does a volleyball that is held beneath the...Ch. 5 - The mountains of the Himalayas are slightly less...Ch. 5 - Give a reason why canal enthusiasts in Scotland...Ch. 5 - The Falkirk Wheel in Scotland (Figure 5.17)...Ch. 5 - One gondola in the Falkirk Wheel carries a 50-ton...Ch. 5 - Both a 50-ton boat and a 100-ton boat float side...Ch. 5 - A ship sailing from the ocean into a fresh-water...Ch. 5 - In a sporting goods store, you see what appear to...Ch. 5 - Why is the pressure in an automobile's tires...Ch. 5 - How does the density of air in a deep mine compare...Ch. 5 - Prob. 95ECh. 5 - It is said that a gas fills all the space...Ch. 5 - Why is there no atmosphere on the Moon?Ch. 5 - We can understand how pressure in water depends on...Ch. 5 - If you could somehow replace the mercury in a...Ch. 5 - Would it be slightly more difficult to draw soda...Ch. 5 - Richards pump can operate at a certain maximum...Ch. 5 - Why is it so difficult to breathe when snorkeling...Ch. 5 - Say youve had a run of bad luck, and you slip...Ch. 5 - In the hydraulic arrangement shown, the larger...Ch. 5 - Prob. 105ECh. 5 - Your friend says that the buoyant force of the...Ch. 5 - When you replace helium in a balloon with...Ch. 5 - Prob. 108ECh. 5 - Prob. 109ECh. 5 - The force of the atmosphere at sea level against...Ch. 5 - Prob. 111ECh. 5 - Prob. 112ECh. 5 - What physics principle underlies the following...Ch. 5 - How does an airplane adjust its angle of attack so...Ch. 5 - The photo shows physics teacher Marshall...Ch. 5 - Prob. 116DQCh. 5 - Which teapot holds more liquid?Ch. 5 - Suppose you wish to lay a level foundation for a...Ch. 5 - If liquid pressure were the same at all depths,...Ch. 5 - Compared to an empty ship, would a ship loaded...Ch. 5 - A barge filled with scrap iron is in a canal lock....Ch. 5 - A discussion of the following question raises some...Ch. 5 - A balloon is weighted so that it is barely able to...Ch. 5 - Greta Novak is treated to remarkable flotation in...Ch. 5 - When an ice cube in a glass of water melts, does...Ch. 5 - Count the tires on a large tractor-trailer that is...Ch. 5 - Two teams of eight horses each were unable to pull...Ch. 5 - In the classroom demonstration at Lund University,...Ch. 5 - If you bring an airtight bag of potato chips...Ch. 5 - On a sensitive balance, weigh an empty, flat, thin...Ch. 5 - Invoking ideas from Chapter 2 and this chapter,...Ch. 5 - Your study partner says he doesn't believe in...Ch. 5 - Choose the BEST answer to the question or the BEST...Ch. 5 - The buoyant force that acts on a 20,000-N ship is...Ch. 5 - A floating duck displaces its own (a) volume of...Ch. 5 - A rock suspended by a weighing scale weighs 15 N...Ch. 5 - The two caissons of the Falkirk Wheel in Scotland...Ch. 5 - To what depth must an inverted drinking glass be...Ch. 5 - Atmospheric pressure is caused by the atmosphere's...Ch. 5 - A hydraulic device multiplies force by 100. This...Ch. 5 - The flight of a blimp best illustrates (a)...Ch. 5 - As water in a confined pipe speeds up, the...
Additional Science Textbook Solutions
Find more solutions based on key concepts
4. What five specific threats to biodiversity are described in this chapter? Provide an example of each.
Biology: Life on Earth (11th Edition)
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Which of the following factors would tend to increase membrane fluidity? A. a greater proportion of unsaturated...
Campbell Biology in Focus (2nd Edition)
The bioremediation process shown in the photograph is used to remove benzene and other hydrocarbons from soil c...
Microbiology: An Introduction
Two culture media were inoculated with four different bacteria. After incubation, the following results were ob...
Microbiology: An Introduction
1. Which parts of the skeleton belong to the appendicular skeleton? Which belong to the axial skeleton?
Human Anatomy & Physiology (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Please help by: Use a free body diagram Show the equations State your assumptions Show your steps Box your final answer Thanks!arrow_forwardBy please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardA collection of electric charges that share a common magnitude q (lower case) has been placed at the corners of a square, and an additional charge with magnitude Q (upper case) is located at the center of that square. The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four unique setups of charges are displayed. By moving one of the direction drawings from near the bottom to the bucket beside each of the setups, indicate the direction of the net electric force on the charge with magnitude Q, located near the center, else indicate that the magnitude of the net electric force is zero, if appropriate.arrow_forward
- A number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q(upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forwardFor each part make sure to include sign to represent direction, with up being positive and down being negative. A ball is thrown vertically upward with a speed of 30.5 m/s. A) How high does it rise? y= B) How long does it take to reach its highest point? t= C) How long does it take the ball return to its starting point after it reaches its highest point? t= D) What is its velocity when it returns to the level from which it started? v=arrow_forwardFour point charges of equal magnitude Q = 55 nC are placed on the corners of a rectangle of sides D1 = 27 cm and D2 = 11cm. The charges on the left side of the rectangle are positive while the charges on the right side of the rectangle are negative. Use a coordinate system where the positive y-direction is up and the positive x-direction is to the right. A. Which of the following represents a free-body diagram for the charge on the lower left hand corner of the rectangle? B. Calculate the horizontal component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fx = __________________________________________NC. Calculate the vertical component of the net force, in newtons, on the charge which lies at the lower left corner of the rectangle.Numeric : A numeric value is expected and not an expression.Fy = __________________________________________ND. Calculate the magnitude of the…arrow_forward
- Point charges q1=50.0μC and q2=-35μC are placed d1=1.0m apart, as shown. A. A third charge, q3=25μC, is positioned somewhere along the line that passes through the first two charges, and the net force on q3 is zero. Which statement best describes the position of this third charge?1) Charge q3 is to the right of charge q2. 2) Charge q3 is between charges q1 and q2. 3) Charge q3 is to the left of charge q1. B. What is the distance, in meters, between charges q1 and q3? (Your response to the previous step may be used to simplify your solution.)Give numeric value.d2 = __________________________________________mC. Select option that correctly describes the change in the net force on charge q3 if the magnitude of its charge is increased.1) The magnitude of the net force on charge q3 would still be zero. 2) The effect depends upon the numeric value of charge q3. 3) The net force on charge q3 would be towards q2. 4) The net force on charge q3 would be towards q1. D. Select option that…arrow_forwardThe magnitude of the force between a pair of point charges is proportional to the product of the magnitudes of their charges and inversely proportional to the square of their separation distance. Four distinct charge-pair arrangements are presented. All charges are multiples of a common positive charge, q. All charge separations are multiples of a common length, L. Rank the four arrangements from smallest to greatest magnitude of the electric force.arrow_forwardA number of electric charges has been placed at distinct points along a line with separations as indicated. Two charges share a common magnitude, q (lower case), and another charge has magnitude Q (upper case). The signs of the charges are indicated explicitly such that ∣∣+q∣∣∣∣+Q∣∣=∣∣−q∣∣==∣∣−Q∣∣=qQ Four different configurations of charges are shown. For each, express the net electric force on the charge with magnitude Q (upper case) as F⃗E=FE,xî where the positive x direction is towards the right. By repositioning the figures to the area on the right, rank the configurations from the most negative value to the most positive value of FE,x.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
How to Calculate Density of Liquids - With Examples; Author: cleanairfilms;https://www.youtube.com/watch?v=DVQMWihs3wQ;License: Standard YouTube License, CC-BY