FLUID MECHANICS-EBOOK>I<
2nd Edition
ISBN: 2819480256061
Author: HIBBELER
Publisher: INTER PEAR
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 5, Problem 99P
To determine
The power of the pump supplies to the water in hp.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
PROBLEM 2.50
1.8 m
The concrete post (E-25 GPa and a
=
9.9 x 10°/°C) is reinforced with six
steel bars, each of 22-mm diameter (E, = 200 GPa and a, = 11.7 x 10°/°C).
Determine the normal stresses induced in the steel and in the concrete by a
temperature rise of 35°C.
6c
"
0.391 MPa
240 mm
240 mm
6₁ =
-9.47 MPa
For some viscoelastic polymers that are subjected to stress relaxation tests, the stress decays with
time according to
a(t) = a(0) exp(-4)
(15.10)
where σ(t) and o(0) represent the time-dependent and initial (i.e., time = 0) stresses, respectively, and t and T denote
elapsed time and the relaxation time, respectively; T is a time-independent constant characteristic of the material. A
specimen of a viscoelastic polymer whose stress relaxation obeys Equation 15.10 was suddenly pulled in tension to
a measured strain of 0.5; the stress necessary to maintain this constant strain was measured as a function of time.
Determine E (10) for this material if the initial stress level was 3.5 MPa (500 psi), which dropped to 0.5 MPa (70
psi) after 30 s.
For the flows in Examples 11.1 and 11.2, calculate the magnitudes of the Δ V2 / 2 terms omitted in B.E., and compare these with the magnitude of the ℱ terms.
Chapter 5 Solutions
FLUID MECHANICS-EBOOK>I<
Ch. 5 - Prob. 1FPCh. 5 - Oil is subjected to a pressure of 300 kPa at A,...Ch. 5 - Prob. 3FPCh. 5 - Water flows through the pipe at 8 m/s. Determine...Ch. 5 - The tank has a square base and is filled with...Ch. 5 - Prob. 6FPCh. 5 - Water flows from the reservoir through the...Ch. 5 - Crude oil flows through the 50-mm-diameter pipe...Ch. 5 - Water at A has a pressure of 400 kPa and a...Ch. 5 - Water from the reservoir flows through the...
Ch. 5 - Prob. 11FPCh. 5 - The jet engine takes in air and fuel having an...Ch. 5 - Determine the required average change in pressure...Ch. 5 - Prob. 2PCh. 5 - Prob. 3PCh. 5 - Air at 60°F flows through the horizontal tapered...Ch. 5 - Prob. 5PCh. 5 - The water in an open channel drainage canal flows...Ch. 5 - Water flows out of a faucet at A at 6 m/s....Ch. 5 - Water flows through the 30-mm-diameter pipe at...Ch. 5 - Water flows through the 30-mm-diameter pipe and is...Ch. 5 - Drainage under a canal is provided using a...Ch. 5 - Prob. 11PCh. 5 - Prob. 12PCh. 5 - A fountain is produced by water that flows up the...Ch. 5 - Prob. 14PCh. 5 - Air is drawn into the 200-mm-diameter cylinder...Ch. 5 - The level of mercury in the manometer has the...Ch. 5 - A fountain ejects water through the two nozzles A...Ch. 5 - Prob. 18PCh. 5 - Heavy rain has caused reservoir A to reach a...Ch. 5 - A fire hydrant supplies water under a pressure of...Ch. 5 - Determine the velocity of water through the pipe...Ch. 5 - The sewage siphon regulates the level of water in...Ch. 5 - If the manometer contains mercury, determine the...Ch. 5 - Prob. 24PCh. 5 - Prob. 25PCh. 5 - When the valve at A is opened, the initial...Ch. 5 - Prob. 27PCh. 5 - Prob. 28PCh. 5 - Air is pumped into the top of the tank so that the...Ch. 5 - Prob. 30PCh. 5 - Prob. 31PCh. 5 - A river has an average width of 5 m. Just after...Ch. 5 - A river has an average width of 5 m and flows with...Ch. 5 - Prob. 34PCh. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Water flows through the transition at 0.3 m3/s,...Ch. 5 - If the water in piezometers A and B rises to hA =...Ch. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - Water flows through the pipe transition with a...Ch. 5 - Water from a faucet tapers from a diameter of 0.5...Ch. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - If the pressure at A is 325 kPa, and the velocity...Ch. 5 - If the pressure at A is 215 kPa, and the velocity...Ch. 5 - Prob. 47PCh. 5 - If the difference in the level of mercury within...Ch. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - Prob. 51PCh. 5 - If the pressure in the 6-in.-diameter pipe at A is...Ch. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 56PCh. 5 - Prob. 57PCh. 5 - Prob. 58PCh. 5 - The solution is ejected from the 20-mm-diameter...Ch. 5 - Prob. 60PCh. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Water from the large closed tank is to be drained...Ch. 5 - Prob. 64PCh. 5 - Carbon dioxide at 20°C passes through the...Ch. 5 - Prob. 66PCh. 5 - Prob. 67PCh. 5 - Determine the average velocity and the pressure in...Ch. 5 - Prob. 69PCh. 5 - Prob. 70PCh. 5 - Prob. 71PCh. 5 - Prob. 72PCh. 5 - Water at a pressure of 12 psi and a velocity of 5...Ch. 5 - Prob. 74PCh. 5 - Prob. 75PCh. 5 - The siphon spillway provides an automatic control...Ch. 5 - Prob. 77PCh. 5 - A piezometer and a manometer containing mercury...Ch. 5 - Water is drawn into the pump, such that the...Ch. 5 - Prob. 80PCh. 5 - Prob. 81PCh. 5 - Prob. 82PCh. 5 - Prob. 83PCh. 5 - A pump is used to deliver water from a large...Ch. 5 - A 6-hp pump with a 3-in.-diameter hose is used to...Ch. 5 - The pump is used with a 3-in.-diameter hose to...Ch. 5 - Solve Prob. 5–86 by including frictional head...Ch. 5 - The pump discharges water at B at 0.3 ft3/s. If...Ch. 5 - Prob. 89PCh. 5 - Draw the energy and hydraulic grade lines for the...Ch. 5 - The turbine removes energy from the water in the...Ch. 5 - Prob. 92PCh. 5 - Prob. 93PCh. 5 - Water in the reservoir flows through the...Ch. 5 - Prob. 95PCh. 5 - Determine the power delivered to the turbine if...Ch. 5 - The turbine at C draws a power of 90.5 hp. If the...Ch. 5 - Prob. 98PCh. 5 - Prob. 99PCh. 5 - Prob. 100PCh. 5 - The pump is connected to the 2-in.-diameter hose....Ch. 5 - Prob. 102PCh. 5 - Prob. 103PCh. 5 - Prob. 104PCh. 5 - Prob. 105PCh. 5 - Crude oil is pumped from a test separator at A to...Ch. 5 - Prob. 107PCh. 5 - Prob. 108PCh. 5 - Determine the power that the pump supplies to the...Ch. 5 - The pump delivers water at 120 ft3/min from the...Ch. 5 - Prob. 111PCh. 5 - Prob. 112P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Calculate ℛP.M. in Example 11.2.arrow_forwardQuestion 22: The superheated steam powers a steam turbine for the production of electrical power. The steam expands in the turbine and at an intermediate expansion pressure (0.1 MPa) a fraction is extracted for a regeneration process in a surface regenerator. The turbine has an efficiency of 90%. It is requested: Define the Power Plant Schematic Analyze the steam power system considering the steam generator system in the attached figure Determine the electrical power generated and the thermal efficiency of the plant Perform an analysis on the power generated and thermal efficiency considering a variation in the steam fractions removed for regeneration ##Data: The steam generator uses biomass from coconut shells to produce 4.5 tons/h of superheated steam; The feedwater returns to the condenser at a temperature of 45°C (point A); Monitoring of the operating conditions in the steam generator indicates that the products of combustion leave the system (point B) at a temperature of 500°C;…arrow_forwardThis is an old practice exam question.arrow_forward
- Steam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat Rankine cycle at 700 psia and 900°F and leaves as saturated vapor. Steam is then reheated to 800°F before it expands to a pressure of 1 psia. Heat is transferred to the steam in the boiler at a rate of 6 × 104 Btu/s. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at 45°F. Use steam tables. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the pressure at which reheating takes place. Use steam tables. Find: The reheat pressure is psia. (P4)Find thermal efficiencyFind m dotarrow_forwardAir at T1 = 24°C, p1 = 1 bar, 50% relative humidity enters an insulated chamber operating at steady state with a mass flow rate of 3 kg/min and mixes with a saturated moist air stream entering at T2 = 7°C, p2 = 1 bar. A single mixed stream exits at T3 = 17°C, p3 = 1 bar. Neglect kinetic and potential energy effects Determine mass flow rate of the moist air entering at state 2, in kg/min Determine the relative humidity of the exiting stream. Determine the rate of entropy production, in kJ/min.Karrow_forwardAir at T1 = 24°C, p1 = 1 bar, 50% relative humidity enters an insulated chamber operating at steady state with a mass flow rate of 3 kg/min and mixes with a saturated moist air stream entering at T2 = 7°C, p2 = 1 bar. A single mixed stream exits at T3 = 17°C, p3 = 1 bar. Neglect kinetic and potential energy effects Determine mass flow rate of the moist air entering at state 2, in kg/min Determine the relative humidity of the exiting stream. Determine the rate of entropy production, in kJ/min.Karrow_forward
- Air at T1 = 24°C, p1 = 1 bar, 50% relative humidity enters an insulated chamber operating at steady state with a mass flow rate of 3 kg/min and mixes with a saturated moist air stream entering at T2 = 7°C, p2 = 1 bar. A single mixed stream exits at T3 = 17°C, p3 = 1 bar. Neglect kinetic and potential energy effects (a) Determine mass flow rate of the moist air entering at state 2, in kg/min (b) Determine the relative humidity of the exiting stream. (c) Determine the rate of entropy production, in kJ/min.Karrow_forwardA simple ideal Brayton cycle operates with air with minimum and maximum temperatures of 27°C and 727°C. It is designed so that the maximum cycle pressure is 2000 kPa and the minimum cycle pressure is 100 kPa. The isentropic efficiencies of the turbine and compressor are 91% and 80%, respectively, and there is a 50 kPa pressure drop across the combustion chamber. Determine the net work produced per unit mass of air each time this cycle is executed and the cycle’s thermal efficiency. Use constant specific heats at room temperature. The properties of air at room temperature are cp = 1.005 kJ/kg·K and k = 1.4. The fluid flow through the cycle is in a clockwise direction from point 1 to 4. Heat Q sub in is given to a component between points 2 and 3 of the cycle. Heat Q sub out is given out by a component between points 1 and 4. An arrow from the turbine labeled as W sub net points to the right. The net work produced per unit mass of air is kJ/kg. The thermal efficiency is %.arrow_forwardSteam enters the high-pressure turbine of a steam power plant that operates on the ideal reheat Rankine cycle at 700 psia and 900°F and leaves as saturated vapor. Steam is then reheated to 800°F before it expands to a pressure of 1 psia. Heat is transferred to the steam in the boiler at a rate of 6 × 104 Btu/s. Steam is cooled in the condenser by the cooling water from a nearby river, which enters the condenser at 45°F. Use steam tables. NOTE: This is a multi-part question. Once an answer is submitted, you will be unable to return to this part. Determine the pressure at which reheating takes place. Use steam tables. The reheat pressure is psia.Find thermal efficieny Find m dotarrow_forward
- This is an old exam practice question.arrow_forwardAs shown in the figure below, moist air at T₁ = 36°C, 1 bar, and 35% relative humidity enters a heat exchanger operating at steady state with a volumetric flow rate of 10 m³/min and is cooled at constant pressure to 22°C. Ignoring kinetic and potential energy effects, determine: (a) the dew point temperature at the inlet, in °C. (b) the mass flow rate of moist air at the exit, in kg/min. (c) the relative humidity at the exit. (d) the rate of heat transfer from the moist air stream, in kW. (AV)1, T1 P₁ = 1 bar 11 = 35% 120 T₂=22°C P2 = 1 bararrow_forwardAir at T₁-24°C, p₁-1 bar, 50% relative humidity enters an insulated chamber operating at steady state with a mass flow rate of 3 kg/min and mixes with a saturated moist air stream entering at T₂-7°C, p2-1 bar. A single mixed stream exits at T3-17°C, p3-1 bar. Neglect kinetic and potential energy effects Step 1 Your answer is correct. Determine mass flow rate of the moist air entering at state 2, in kg/min. m2 = 2.1 Hint kg/min Using multiple attempts will impact your score. 5% score reduction after attempt 2 Step 2 Determine the relative humidity of the exiting stream. Փ3 = i % Attempts: 1 of 3 usedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Fluid Mechanics - Viscosity and Shear Strain Rate in 9 Minutes!; Author: Less Boring Lectures;https://www.youtube.com/watch?v=_0aaRDAdPTY;License: Standard youtube license