(a)
Interpretation: The balanced chemical equation for the combustion of butane needs to be determined.
Concept Introduction: The combustion of butane takes place in the presence of oxygen and results in the formation of carbon dioxide and water.
(b)
Interpretation: The volume of carbon dioxide produced needs to be determined.
Concept Introduction:
The number of moles can be calculated from mass and molar mass as follows:
Here, m is mass and M is molar mass.
(c)
Interpretation: The Lewis structure of butane needs to be drawn.
Concept Introduction:
The Lewis structure is drawn using valence electrons and lone pair of electrons in an atom. The electrons which are not involved in bonding are known as lone pair of electrons.
(d)
Interpretation: The Lewis structure for 2-methylpropane needs to be drawn.
Concept Introduction:
The Lewis structure is drawn using valence electrons and lone pair of electrons in an atom. The electrons which are not involved in bonding are known as lone pair of electrons.
(e)
Interpretation: The boiling point of butane or 2-methylpropane needs to be compared.
Concept Introduction:
For two molecules or compounds with same molecular formula and molecular weight, boiling point can be different if there is different arrangement of atoms. This is because boiling point increases, if surface area increases.
(f)
Interpretation: The vapor pressure of butane or 2-methylpropane needs to be compared.
Concept Introduction:
The vapor pressure of a compound and boiling point are inversely proportional to each other.
(g)
Interpretation: The type of intermolecular forces in a container containing butane and 2- methylpropane needs to be explained.
Concept Introduction:
Non-polar molecules are those in which atoms do not have any electronegativity difference between them.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Introduction to General, Organic and Biochemistry
- How does hydraulic fracturing differ from previously used techniques for the recovery of natural gas from the earth?arrow_forwardYou have two pressure-proof steel cylinders of equal volume, one containing 1.0 kg of CO and the other containing 1.0 kg of acetylene, C2H2. (a) In which cylinder is the pressure greater at 25 C? (b) Which cylinder contains the greater number of molecules?arrow_forward5-114 Carbon dioxide gas, saturated with water vapor, can be produced by the addition of aqueous acid to calcium carbonate based on the following balanced net ionic equation: (a) How many moles of wet CO (g), collected at 60.°C and 774 torr total pressure, are produced by the complete reaction of 10.0 g of CaCO3 with excess acid? (b) What volume does this wet CO2 occupy? (c) What volume would the CO2 occupy at 774 torr if a desiccant (a chemical drying agent) were added to remove the water? The vapor pressure of water at 60.°C is 149.4 mm Hg.arrow_forward
- 5-111 Diving, particularly SCUBA (Self-Contained Underwater Breathing Apparatus) diving, subjects the body to increased pressure. Each 10. m (approximately 33 ft) of water exerts an additional pressure of 1 atm on the body. (a) What is the pressure on the body at a depth of 100. ft? (b) The partial pressure of nitrogen gas in air at 1 atm is 593 mm Hg. Assuming a SCUBA diver breathes compressed air, what is the partial pressure of nitrogen entering the lungs from a breathing tank at a depth of 100. ft? (c) The partial pressure of oxygen gas in the air at 2 atm is 158 mm Hg. What is the partial pressure of oxygen in the air in the lungs at a depth of 100. ft? (d) Why is it absolutely essential to exhale vigorously in a rapid ascent from a depth of 100. ft?arrow_forwardA sample of a smoke stack emission was collected into a 1.25-L tank at 752 mm Hg and analyzed. The analysis showed 92% CO2, 3.6% NO, 1.2% SO2, and 4.1% H2O by mass. What is the partial pressure exerted by each gas?arrow_forwardWhat possible uses exist for the natural gas liquids that are removed from natural gas during its processing?arrow_forward
- Pyruvic acid, HC3H3O3, is involved in cell metabolism. It can be assayed for (that is, the amount of it determined) by using a yeast enzyme. The enzyme makes the following reaction go to completion: HC3H3O3(aq)C2H4O(aq)+CO2(g) If a sample containing pyruvic acid gives 21.2 mL of carbon dioxide gas, CO2, at 349 mmHg and 30C, how many grams of pyruvic acid are there in the sample?arrow_forwardGiven that a sample of air is made up of nitrogen, oxygen, and argon in the mole fractions 0.78 N2, 0.21 O2, and 0.010 Ar, what is the density of air at standard temperature and pressure?arrow_forward5-89 (Chemical Connections 5C) In a sphygmomanometer one listens to the first tapping sound as the constrictive pressure of the arm cuff is slowly released. What is the significance of this tapping sound?arrow_forward
- A 6.53-g sample of a mixture of magnesium carbonateand calcium carbonate is treated with excesshydrochloric acid. The resulting reaction produces 1.72 Lof carbon dioxide gas at 28 °C and 743 torr pressure.(a) Write balanced chemical equations for the reactionsthat occur between hydrochloric acid and each componentof the mixture. (b) Calculate the total number ofmoles of carbon dioxide that forms from these reactions.(c) Assuming that the reactions are complete, calculatethe percentage by mass of magnesium carbonate in themixture.arrow_forwardA flammable gas contains only C, H, N, and Cl. The complete combustion of a 100.0 mg sample of this gas in excess oxygen produces 83.16 mL of CO2 and 73.30 mL of H2O vapor at STP. A separate analysis shows that the sample also contains 16.44 mg of Cl. (a) Determine the percentage of the composition of the substance. (b) Calculate its empirical formula. (c) If the rms speed of this gas at 25°C is 131.325 m/s, calculate its molecular formula.arrow_forwardA 6.53 g sample of mixture of magnesium carbonate and calcium carbonate is treated with excess hydrochloric acid. The resulting reaction produces 1.71 L of carbon dioxide gas @28.0 degrees C and 735 torr pressure.arrow_forward
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning