Physics
Physics
3rd Edition
ISBN: 9780073512150
Author: Alan Giambattista, Betty Richardson, Robert C. Richardson Dr.
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 85P

(a)

To determine

The magnitude of height H.

(a)

Expert Solution
Check Mark

Answer to Problem 85P

The magnitude of height H is 3.58×107m.

Explanation of Solution

The height of the space station is H and radius of earth is 6.371×106m, mass of the earth is 5.974×1024kg, the time period the space station is 86400s and universal gravitational constant is 6.674×1011m3/kgs2.

Write the expression for the radius of the space station.

R=RE+H (I)

Here, RE is the radius of the earth, R is the radius of the space station and H is the height of the space station above the surface of the earth.

Write the expression to calculate the radius of the space station.

R=(GMT24π2)13 (II)

Here, G is the universal gravitational constant, M is the mass of the earth, T is the time period of space station.

Equate equation (I) and (II) to calculate H.

RE+H=(GMT24π2)13

Substitute 6.371×106m for RE, 5.974×1024kg for M, 86400s for T and 6.674×1011m3/kgs2 for G in the above equation to calculate H.

6.371×106m+H=((6.674×1011m3/kgs2)(5.974×1024kg)(86400s)24π2)13H=4.22×107m6.371×106m=3.58×107m

Conclusion:

Therefore, the magnitude of height H is 3.58×107m.

(b)

To determine

The tension on the spring and which part of the cable would experience this tension.

(b)

Expert Solution
Check Mark

Answer to Problem 85P

The tension in the cable is 55N and the upward potion of the cable above the car would under tension.

Explanation of Solution

The mass of the car is 100kg.

Write the equilibrium condition for forces in the cable.

GMmr2Tc=mω2r (III)

Here, Tc is the tension in the cable, r is the distance from the centre of the earth to the car, m is the mass of the car and ω is the angular speed.

Write the expression to calculate the distance from the centre of the earth to the car.

r=RE+H2 (IV)

Write the expression to calculate the angular speed of the car.

ω=2πT (V)

Rewrite the equation (III) using (IV) and (V) in terms of T.

GMm(RE+H2)2Tc=m(2πT)2(RE+H2)Tc=GMm(RE+H2)2m(2πT)2(RE+H2)

Substitute 3.58×107m for H, 6.371×106m for RE, 5.974×1024kg for M, 100kg for m and 86400s for T, and 6.674×1011m3/kgs2 for G in the above equation to calculate Tc.

Tc=(6.674×1011m3/kgs2)(5.974×1024kg)100kg(6.371×106m+3.58×107m2)2100kg(2π86400s)2(6.371×106m+3.58×107m2)=3.987×1016kgm3/s25.89×1014m2(5.28×107kg/s2)(2.43×107m)=67.7N12.8N=54.9N55N

Since the tension on the car is positive in magnitude, which means car would pull upward. Therefore, the cable segment above the car upward portion would under tension.

Conclusion:

Therefore, the tension in the cable is 55N and the upward potion of the cable above the car would under tension.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
No chatgpt pls
Consider the situation in the figure below; a neutral conducting ball hangs from the ceiling by an insulating string, and a charged insulating rod is going to be placed nearby. A. First, if the rod was not there, what statement best describes the charge distribution of the ball? 1)  Since it is a conductor, all the charges are on the outside of the ball. 2)  The ball is neutral, so it has no positive or negative charges anywhere. 3)  The positive and negative charges are separated from each other, but we don't know what direction the ball is polarized. 4)  The positive and negative charges are evenly distributed everywhere in the ball.  B. Now, when the rod is moved close to the ball, what happens to the charges on the ball? 1)  There is a separation of charges in the ball; the side closer to the rod becomes positively charged, and the opposite side becomes negatively charged. 2)  Negative charge is drawn from the ground (via the string), so the ball acquires a net negative charge. 3)…
answer question  5-9

Chapter 5 Solutions

Physics

Ch. 5.4 - Prob. 5.8PPCh. 5.4 - Prob. 5.4CPCh. 5.4 - Prob. 5.9PPCh. 5.4 - Prob. 5.10PPCh. 5.5 - Prob. 5.5CPCh. 5.5 - Prob. 5.11PPCh. 5.5 - Conceptual Practice Problem 5.12 Analysis of the...Ch. 5.6 - Prob. 5.6CPCh. 5.6 - Prob. 5.13PPCh. 5.7 - Prob. 5.14PPCh. 5 - Prob. 1CQCh. 5 - Prob. 2CQCh. 5 - Prob. 3CQCh. 5 - Prob. 4CQCh. 5 - Prob. 5CQCh. 5 - Prob. 6CQCh. 5 - Prob. 7CQCh. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Prob. 10CQCh. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - Multiple-Choice Questions 1-4 and Problem...Ch. 5 - Questions 1–4: A satellite in orbit travels around...Ch. 5 - 3. What is the direction of the satellite’s...Ch. 5 - 4. What is the direction of the satellite’s...Ch. 5 - 5. An object moving in a circle at a constant...Ch. 5 - 6. A spider sits on a DVD that is rotating at a...Ch. 5 - 7. Two satellites are in orbit around Mars with...Ch. 5 - Questions 8-9: A boy swings in a tire swing....Ch. 5 - 9. When is the tension in the rope the...Ch. 5 - Questions 10–11 concern these three...Ch. 5 - 11. An object is in nonuniform circular motion...Ch. 5 - 12. An astronaut is out in space far from any...Ch. 5 - 1. A carnival swing is fixed on the end of an 8.0...Ch. 5 - 2. Convert these to radian measure: (a) 30.0°, (b)...Ch. 5 - 3. Find the average angular speed of the second...Ch. 5 - 4. An elevator cable winds on a drum of radius...Ch. 5 - 5. A wheel of radius 30 cm is rotating at a rate...Ch. 5 - 6. A soccer ball of diameter 31 cm rolls without...Ch. 5 - 7. A bicycle is moving at 9.0 m/s. What is the...Ch. 5 - 8. Dung beetles are renowned for building large...Ch. 5 - 9. In the construction of railroads, it is...Ch. 5 - Problems 10–12. Five flywheels are spinning as...Ch. 5 - Prob. 11PCh. 5 - Prob. 12PCh. 5 - 13. Objects that are at rest relative to Earth’s...Ch. 5 - Prob. 14PCh. 5 - Prob. 15PCh. 5 - Prob. 16PCh. 5 - Prob. 17PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - Prob. 20PCh. 5 - 21. A conical pendulum consists of a bob (mass...Ch. 5 - Prob. 22PCh. 5 - Prob. 23PCh. 5 - Prob. 24PCh. 5 - 25. A roller coaster car of mass 320 kg (including...Ch. 5 - Prob. 26PCh. 5 - Prob. 27PCh. 5 - Prob. 28PCh. 5 - Prob. 29PCh. 5 - Prob. 30PCh. 5 - Prob. 31PCh. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - Prob. 34PCh. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 37PCh. 5 - Prob. 38PCh. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - Prob. 42PCh. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - Prob. 45PCh. 5 - Prob. 46PCh. 5 - Prob. 47PCh. 5 - Prob. 48PCh. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - Prob. 51PCh. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 55PCh. 5 - 56. Find the tangential acceleration of a freely...Ch. 5 - Prob. 57PCh. 5 - Prob. 58PCh. 5 - Prob. 59PCh. 5 - Prob. 60PCh. 5 - Prob. 61PCh. 5 - Prob. 62PCh. 5 - Prob. 63PCh. 5 - Prob. 64PCh. 5 - Prob. 65PCh. 5 - Prob. 66PCh. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - Prob. 70PCh. 5 - Prob. 71PCh. 5 - Prob. 72PCh. 5 - Prob. 73PCh. 5 - Prob. 74PCh. 5 - Prob. 75PCh. 5 - Prob. 76PCh. 5 - Prob. 77PCh. 5 - Prob. 78PCh. 5 - Prob. 79PCh. 5 - Prob. 80PCh. 5 - Prob. 81PCh. 5 - Prob. 82PCh. 5 - Prob. 83PCh. 5 - Prob. 84PCh. 5 - Prob. 85PCh. 5 - Prob. 86PCh. 5 - Prob. 87PCh. 5 - Prob. 88PCh. 5 - Prob. 89PCh. 5 - Prob. 90PCh. 5 - Prob. 91PCh. 5 - Prob. 92PCh. 5 - Prob. 93PCh. 5 - 94. Two blocks are connected by a light string...Ch. 5 - Prob. 95PCh. 5 - Prob. 96P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY