Physics
Physics
5th Edition
ISBN: 9781260487008
Author: GIAMBATTISTA, Alan
Publisher: MCGRAW-HILL HIGHER EDUCATION
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 5, Problem 84P

(a)

To determine

The radial acceleration of the material in terms of g.

(a)

Expert Solution
Check Mark

Answer to Problem 84P

The radial acceleration is 90g.

Explanation of Solution

The angular speed of centrifuge is 1.0×103rev/min and the radius of rotor is 8.0cm.

Write the relation between the radial acceleration and the angular speed.

ar=ω2r

Here, the radial acceleration is ar, angular speed is ω, and the radius of rotor is r.

Conclusion:

Substitute 1.0×103rev/min for ω and 8.0cm for r in the above equation to find ar.

ar=(1.0×103rev/min(rad1rev)(1min60s))2(8.0cm(1m100cm))(g9.80m/s2)=(1.09×104)(0.0082)g=90g

Therefore, the radial acceleration is 90g.

(b)

To determine

The net force on the red blood cell.

(b)

Expert Solution
Check Mark

Answer to Problem 84P

The net force is 7.9×1011N.

Explanation of Solution

The angular speed of centrifuge is 1.0×103rev/min, radius of rotor is 8.0cm, and the mass of blood cell is 9.0×1014kg.

Write the equation for net force.

Fnet=mar

Here, the net force is Fnet, mass of red blood cell is m.

Conclusion:

Substitute 9.0×1014kg for m and 90g for ar in the above equation to find Fnet.

Fnet=(9.0×1014kg)(90g(9.8m/s2g))=7.9×1011N

Therefore, the net force is 7.9×1011N.

(b)

To determine

The net force on the red blood cell.

(b)

Expert Solution
Check Mark

Answer to Problem 84P

The net force is 7.9×1011N.

Explanation of Solution

The angular speed of centrifuge is 1.0×103rev/min, radius of rotor is 8.0cm, and the mass of blood cell is 9.0×1014kg.

Write the equation for net force.

Fnet=mar

Here, the net force is Fnet, mass of red blood cell is m.

Conclusion:

Substitute 9.0×1014kg for m and 90g for ar in the above equation to find Fnet.

Fnet=(9.0×1014kg)(90g(9.8m/s2g))=7.9×1011N

Therefore, the net force is 7.9×1011N.

(c)

To determine

The net force on the virus particle.

(c)

Expert Solution
Check Mark

Answer to Problem 84P

The net force is 4.4×1018N.

Explanation of Solution

The angular speed of centrifuge is 1.0×103rev/min, radius of rotor is 8.0cm, and the mass of virus is 5.0×1021kg.

Write the equation for net force.

Fnet=mvirusar

Here, the mass of virus is mvirus.

Conclusion:

Substitute 5.0×1021kg for mvirus and 90g for ar in the above equation to find Fnet.

Fnet=(5.0×1021kg)(90g(9.8m/s2g))=4.4×1018N

Therefore, the net force is 4.4×1018N.

(d)

To determine

The radial acceleration inside the ultracentrifuge in terms of g.

(d)

Expert Solution
Check Mark

Answer to Problem 84P

The radial acceleration is 5.0×105g.

Explanation of Solution

The angular speed of centrifuge is 75,000rev/min and the radius of rotor is 8.0cm.

Write the equation for net force.

Write the relation between the radial acceleration and the angular speed.

ar=ω2r

Conclusion:

Substitute 75,000rev/min for ω and 8.0cm for r in the above equation to find ar.

ar=(75,000rev/min(rad1rev)(1min60s))2(8.0cm(1m100cm))(g9.80m/s2)=(61.62)(0.0082)g=5.0×105g

Therefore, the net force is 5.0×105g.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Three point-like charges in the attached image are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 38.0 cm, and the point (C) is located half way between q1 and q3 along the side. Find the magnitude of the electric field at point (C). Let q1 = −2.80 µC, q2 = −3.40 µC, and q3 = −4.50 µC. Thank you.
Three point-like charges are placed as shown in the attach image, where r1 = r2 = 44.0 cm. Find the magnitude of the electric force exerted on the charge q3. Let q1 = -1.90 uC, q2 = -2.60 uC, and q3 = +3.60 uC. Thank you.
The drawing attached shows an edge-on view of two planar surfaces that intersect and are mutually perpendicular. Surface (1) has an area of 1.90 m², while Surface (2) has an area of 3.90 m². The electric field in magnitude of 215 N/C. Find the magnitude of the electric flux through surface (1 and 2 combined) if the angle theta made between the electric field with surface (2) is 30.0 degrees. Thank you.

Chapter 5 Solutions

Physics

Ch. 5.4 - Prob. 5.8PPCh. 5.4 - Prob. 5.4CPCh. 5.4 - Prob. 5.9PPCh. 5.4 - Prob. 5.10PPCh. 5.5 - Prob. 5.5CPCh. 5.5 - Prob. 5.11PPCh. 5.5 - Conceptual Practice Problem 5.12 Analysis of the...Ch. 5.6 - Prob. 5.6CPCh. 5.6 - Prob. 5.13PPCh. 5.7 - Prob. 5.14PPCh. 5 - Prob. 1CQCh. 5 - Prob. 2CQCh. 5 - Prob. 3CQCh. 5 - Prob. 4CQCh. 5 - Prob. 5CQCh. 5 - Prob. 6CQCh. 5 - Prob. 7CQCh. 5 - Prob. 8CQCh. 5 - Prob. 9CQCh. 5 - Prob. 10CQCh. 5 - Prob. 11CQCh. 5 - Prob. 12CQCh. 5 - Multiple-Choice Questions 1-4 and Problem...Ch. 5 - Questions 1–4: A satellite in orbit travels around...Ch. 5 - 3. What is the direction of the satellite’s...Ch. 5 - 4. What is the direction of the satellite’s...Ch. 5 - 5. An object moving in a circle at a constant...Ch. 5 - 6. A spider sits on a DVD that is rotating at a...Ch. 5 - 7. Two satellites are in orbit around Mars with...Ch. 5 - Questions 8-9: A boy swings in a tire swing....Ch. 5 - 9. When is the tension in the rope the...Ch. 5 - Questions 10–11 concern these three...Ch. 5 - 11. An object is in nonuniform circular motion...Ch. 5 - 12. An astronaut is out in space far from any...Ch. 5 - Prob. 1PCh. 5 - 2. Convert these to radian measure: (a) 30.0°, (b)...Ch. 5 - 3. Find the average angular speed of the second...Ch. 5 - 4. An elevator cable winds on a drum of radius...Ch. 5 - 5. A wheel of radius 30 cm is rotating at a rate...Ch. 5 - 6. A soccer ball of diameter 31 cm rolls without...Ch. 5 - 7. A bicycle is moving at 9.0 m/s. What is the...Ch. 5 - 8. Dung beetles are renowned for building large...Ch. 5 - Prob. 9PCh. 5 - 9. In the construction of railroads, it is...Ch. 5 - Problems 10–12. Five flywheels are spinning as...Ch. 5 - Prob. 12PCh. 5 - Prob. 13PCh. 5 - 13. Objects that are at rest relative to Earth’s...Ch. 5 - Prob. 14PCh. 5 - Prob. 17PCh. 5 - Prob. 16PCh. 5 - Prob. 18PCh. 5 - Prob. 19PCh. 5 - Prob. 20PCh. 5 - 21. A conical pendulum consists of a bob (mass...Ch. 5 - Prob. 22PCh. 5 - Prob. 25PCh. 5 - Prob. 26PCh. 5 - A roller coaster car of mass 320 kg (including...Ch. 5 - Prob. 24PCh. 5 - Prob. 27PCh. 5 - Prob. 31PCh. 5 - Prob. 29PCh. 5 - Prob. 30PCh. 5 - Prob. 28PCh. 5 - Prob. 32PCh. 5 - Prob. 33PCh. 5 - Prob. 34PCh. 5 - Prob. 37PCh. 5 - Prob. 38PCh. 5 - Prob. 35PCh. 5 - Prob. 36PCh. 5 - Prob. 39PCh. 5 - Prob. 40PCh. 5 - Prob. 41PCh. 5 - Prob. 42PCh. 5 - Prob. 43PCh. 5 - Prob. 44PCh. 5 - Prob. 45PCh. 5 - Prob. 46PCh. 5 - Prob. 47PCh. 5 - Prob. 48PCh. 5 - Prob. 49PCh. 5 - Prob. 50PCh. 5 - Prob. 51PCh. 5 - Prob. 52PCh. 5 - Prob. 53PCh. 5 - Prob. 54PCh. 5 - Prob. 55PCh. 5 - 56. Find the tangential acceleration of a freely...Ch. 5 - Prob. 57PCh. 5 - Prob. 58PCh. 5 - Prob. 59PCh. 5 - Prob. 62PCh. 5 - Prob. 61PCh. 5 - Prob. 60PCh. 5 - Prob. 63PCh. 5 - Prob. 64PCh. 5 - Prob. 65PCh. 5 - Prob. 66PCh. 5 - Prob. 67PCh. 5 - Prob. 68PCh. 5 - Prob. 69PCh. 5 - Prob. 70PCh. 5 - Prob. 71PCh. 5 - Prob. 72PCh. 5 - Prob. 73PCh. 5 - Prob. 74PCh. 5 - Prob. 75PCh. 5 - Prob. 76PCh. 5 - Prob. 77PCh. 5 - Prob. 78PCh. 5 - Prob. 79PCh. 5 - Prob. 80PCh. 5 - Prob. 81PCh. 5 - Prob. 82PCh. 5 - Prob. 83PCh. 5 - Prob. 84PCh. 5 - Prob. 85PCh. 5 - Prob. 86PCh. 5 - Prob. 87PCh. 5 - Prob. 88PCh. 5 - Prob. 89PCh. 5 - Prob. 90PCh. 5 - Prob. 91PCh. 5 - Prob. 92PCh. 5 - Prob. 93PCh. 5 - 94. Two blocks are connected by a light string...Ch. 5 - Prob. 95PCh. 5 - Prob. 96P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
What Is Circular Motion? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=1cL6pHmbQ2c;License: Standard YouTube License, CC-BY