A ski jumper starts from rest 50.0 m above the ground on a frictionless track and flies off the track at an angle of 45.0° above the horizontal and at a height of 10.0 m above the level ground. Neglect air resistance, (a) What is her speed when she leaves the track? (b) What is the maximum altitude she attains after leaving the track? (c) Where does she land relative to the end of the track?
A ski jumper starts from rest 50.0 m above the ground on a frictionless track and flies off the track at an angle of 45.0° above the horizontal and at a height of 10.0 m above the level ground. Neglect air resistance, (a) What is her speed when she leaves the track? (b) What is the maximum altitude she attains after leaving the track? (c) Where does she land relative to the end of the track?
Solution Summary: The author explains that the speed of the ski jumper when she leaves the track is 28.0m/s.
A ski jumper starts from rest 50.0 m above the ground on a frictionless track and flies off the track at an angle of 45.0° above the horizontal and at a height of 10.0 m above the level ground. Neglect air resistance, (a) What is her speed when she leaves the track? (b) What is the maximum altitude she attains after leaving the track? (c) Where does she land relative to the end of the track?
For each of the actions depicted below, a magnet and/or metal loop moves with velocity v→ (v→ is constant and has the same magnitude in all parts). Determine whether a current is induced in the metal loop. If so, indicate the direction of the current in the loop, either clockwise or counterclockwise when seen from the right of the loop. The axis of the magnet is lined up with the center of the loop. For the action depicted in (Figure 5), indicate the direction of the induced current in the loop (clockwise, counterclockwise or zero, when seen from the right of the loop). I know that the current is clockwise, I just dont understand why. Please fully explain why it's clockwise, Thank you
A planar double pendulum consists of two point masses \[m_1 = 1.00~\mathrm{kg}, \qquad m_2 = 1.00~\mathrm{kg}\]connected by massless, rigid rods of lengths \[L_1 = 1.00~\mathrm{m}, \qquad L_2 = 1.20~\mathrm{m}.\]The upper rod is hinged to a fixed pivot; gravity acts vertically downward with\[g = 9.81~\mathrm{m\,s^{-2}}.\]Define the generalized coordinates \(\theta_1,\theta_2\) as the angles each rod makes with thedownward vertical (positive anticlockwise, measured in radians unless stated otherwise).At \(t=0\) the system is released from rest with \[\theta_1(0)=120^{\circ}, \qquad\theta_2(0)=-10^{\circ}, \qquad\dot{\theta}_1(0)=\dot{\theta}_2(0)=0 .\]Using the exact nonlinear equations of motion (no small-angle or planar-pendulumapproximations) and assuming the rods never stretch or slip, determine the angle\(\theta_2\) at the instant\[t = 10.0~\mathrm{s}.\]Give the result in degrees, in the interval \((-180^{\circ},180^{\circ}]\).
What are the expected readings of the ammeter and voltmeter for the circuit in the figure below? (R = 5.60 Ω, ΔV = 6.30 V)
ammeter
I =
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
8.01x - Lect 11 - Work, Kinetic & Potential Energy, Gravitation, Conservative Forces; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=9gUdDM6LZGo;License: Standard YouTube License, CC-BY