Bundle: An Introduction to Physical Science, 14th Loose-leaf Version + WebAssign Printed Access Card, Single Term. Shipman/Wilson/Higgins/Torres
14th Edition
ISBN: 9781305719057
Author: James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 5, Problem 6AYK
To determine
Opening a refrigerator door is not a good way to cool room. Explain the reason.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Bundle: An Introduction to Physical Science, 14th Loose-leaf Version + WebAssign Printed Access Card, Single Term. Shipman/Wilson/Higgins/Torres
Ch. 5.1 - We talk about temperature, but what does it...Ch. 5.1 - Are there any limits on the lowest and highest...Ch. 5.1 - Show that a temperature of 40 is the same on both...Ch. 5.2 - Prob. 1PQCh. 5.2 - Most substances contract with decreasing...Ch. 5.3 - What is specific about specific heat?Ch. 5.3 - Prob. 2PQCh. 5.3 - Prob. 5.2CECh. 5.3 - How much heat must be removed from 0.20 kg of...Ch. 5.4 - What are the three methods of heat transfer?
Ch. 5.4 - Prob. 2PQCh. 5.5 - Prob. 1PQCh. 5.5 - Prob. 2PQCh. 5.6 - In the ideal gas law, pressure is directly...Ch. 5.6 - Prob. 2PQCh. 5.6 - Prob. 5.4CECh. 5.7 - Prob. 1PQCh. 5.7 - Prob. 2PQCh. 5 - Prob. AMCh. 5 - Prob. BMCh. 5 - Prob. CMCh. 5 - Prob. DMCh. 5 - Prob. EMCh. 5 - Prob. FMCh. 5 - Prob. GMCh. 5 - Prob. HMCh. 5 - Prob. IMCh. 5 - Prob. JMCh. 5 - Prob. KMCh. 5 - Prob. LMCh. 5 - Prob. MMCh. 5 - Prob. NMCh. 5 - Prob. OMCh. 5 - Prob. PMCh. 5 - Prob. QMCh. 5 - Prob. RMCh. 5 - Prob. SMCh. 5 - Prob. TMCh. 5 - Prob. UMCh. 5 - Prob. VMCh. 5 - Prob. WMCh. 5 - Prob. XMCh. 5 - Prob. YMCh. 5 - Prob. 1MCCh. 5 - Which unit of the following is smaller? (5.2) (a)...Ch. 5 - Prob. 3MCCh. 5 - Prob. 4MCCh. 5 - Prob. 5MCCh. 5 - Prob. 6MCCh. 5 - Prob. 7MCCh. 5 - Which of the following has a definite volume but...Ch. 5 - If the average kinetic energy of the molecules in...Ch. 5 - When we use the ideal gas law, the temperature...Ch. 5 - Prob. 11MCCh. 5 - Prob. 12MCCh. 5 - When a bimetallic strip is heated, it bends away...Ch. 5 - Prob. 2FIBCh. 5 - Prob. 3FIBCh. 5 - Prob. 4FIBCh. 5 - Prob. 5FIBCh. 5 - Prob. 6FIBCh. 5 - Prob. 7FIBCh. 5 - The ___ phase of matter has no definite shape, and...Ch. 5 - Prob. 9FIBCh. 5 - In the ideal gas law, pressure is ___ proportional...Ch. 5 - Prob. 11FIBCh. 5 - Prob. 12FIBCh. 5 - When the temperature changes during the day, which...Ch. 5 - Prob. 2SACh. 5 - The two common liquids used in liquid-in-glass...Ch. 5 - An older type of thermostat used in furnace and...Ch. 5 - Heat may be thought of as the middleman of energy....Ch. 5 - When one drinking glass is stuck inside another,...Ch. 5 - Prob. 7SACh. 5 - What does the specific heat of a substance tell...Ch. 5 - When eating a piece of hot apple pie, you may find...Ch. 5 - Prob. 10SACh. 5 - When you exhale outdoors on a cold day, you can...Ch. 5 - Compare the SI units of specific heat and latent...Ch. 5 - Give two examples each of good thermal conductors...Ch. 5 - Prob. 14SACh. 5 - Prob. 15SACh. 5 - Thermal underwear is made to fit loosely. ( Fig....Ch. 5 - What determines the phase of a substance?Ch. 5 - Give descriptions of a solid, a liquid, and a gas...Ch. 5 - Prob. 19SACh. 5 - How does the kinetic theory describe a gas?Ch. 5 - Prob. 21SACh. 5 - Prob. 22SACh. 5 - Prob. 23SACh. 5 - In terms of kinetic theory, explain why a...Ch. 5 - Prob. 25SACh. 5 - Prob. 26SACh. 5 - Prob. 27SACh. 5 - Prob. 28SACh. 5 - What can be said about the total entropy of the...Ch. 5 - Prob. 30SACh. 5 - Prob. 31SACh. 5 - Prob. 1VCCh. 5 - Prob. 1AYKCh. 5 - Prob. 2AYKCh. 5 - Prob. 3AYKCh. 5 - Prob. 4AYKCh. 5 - Prob. 5AYKCh. 5 - Prob. 6AYKCh. 5 - When you freeze ice cubes in a tray, there is a...Ch. 5 - Prob. 8AYKCh. 5 - Prob. 1ECh. 5 - Prob. 2ECh. 5 - Prob. 3ECh. 5 - Prob. 4ECh. 5 - Researchers in the Antarctic measure the...Ch. 5 - Prob. 6ECh. 5 - A college student produces about 100 kcal of heat...Ch. 5 - Prob. 8ECh. 5 - A pound of body fat stores an amount of chemical...Ch. 5 - Prob. 10ECh. 5 - On a brisk walk, a person burns about 325 Cal/h....Ch. 5 - Prob. 12ECh. 5 - How much heat in kcal must be added to 0.50 kg of...Ch. 5 - Prob. 14ECh. 5 - (a) How much energy is necessary to heat 1.0 kg of...Ch. 5 - Equal amounts of heat are added to equal masses of...Ch. 5 - How much heat is necessary to change 500 g of ice...Ch. 5 - A quantity of steam (300 g) at 110C is condensed,...Ch. 5 - Prob. 19ECh. 5 - A fire breaks out and increases the Kelvin...Ch. 5 - A cylinder of gas is at room temperature (20C)....Ch. 5 - A cylinder of gas at room temperature has a...Ch. 5 - A quantity of gas in a piston cylinder has a...Ch. 5 - If the gas in Exercise 23 is initially at room...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A sample of an ideal gas goes through the process shown in Figure P17.26. From A to B, the process is adiabatic; from B to C, it is isobaric with 100 kJ of energy entering the system by heat; from C to D, the process is isothermal; and from D to A, it is isobaric with 150 kJ of energy leaving the system by heat. Determine the difference in internal energy Eint,B Eint,A.arrow_forwardIf a gas undergoes an isobaric process, which of the following statements is true? (a) The temperature of the gas doesnt change. (b) Work is done on or by the gas. (c) No energy is transferred by heat to or from the gas. (d) The volume of the gas remains the same. (e) The pressure of the gas decreases uniformly.arrow_forwardOne mole of neon gas is heated from 300 K to 420 K at constant pressure. Calculate (a) the energy Q transferred to the gas, (b) the change in the internal energy of the gas, and (c) the work done on the gas. Note that neon has a molar specific heat of Cp = 20.79 J/mol K for a constant-pressure process.arrow_forward
- You and your younger brother are designing an air rifle that will shoot a lead pellet with mass m = 1.10 g and cross-sectional area A = 0.030 0 cm3. The rifle works by allowing high-pressure air to expand, propelling the pellet down the rifle barrel. Because this process happens very quickly, no appreciable thermal conduction occurs and the expansion is essentially adiabatic. Your design is such that, once the pressure begins pushing on the pellet, it moves a distance of L = 50.0 cm before leaving the open end of the rifle at your desired speed of v = 120 m/s. Your design also includes a chamber of volume V = 12.0 cm3 in which the high-pressure air is stored until it is released. Your brother reminds you that you need to purchase a pump to pressurize the chamber. To determine what kind of pump to buy, you need to find what the pressure of the air must be in the chamber to achieve your desired muzzle speed. Ignore the effects of the air in front of the bullet and friction with the inside walls of the barrel.arrow_forwardAn ideal gas is compressed to half its initial volume by means of several possible processes. Which of the following processes results in the most work done on the gas? (a) isothermal (b) adiabatic (c) isobaric (d) The work done is independent of the process.arrow_forwardAn air rifle shoots a lead pellet by allowing high pressure air to expand, propelling the pellet down the rifle barrel. Because this process happens very quickly, no appreciable thermal conduction occurs and the expansion is essentially adiabatic. Suppose the rifle starts with 12.0 cm3 of compressed air, which behaves as an ideal gas with = 1.40. The expanding air pushes a 1.10-g pellet as a piston with cross-sectional area 0.030 0 cm2 along the 50.0-cm-long gun barrel. What initial pressure is required to eject the pellet with a muzzle speed of 120 m/s? Ignore the effects of the air in front of the bullet and friction with the inside walls of the barrel.arrow_forward
- Review. A house has well-insulated walls. It contains a volume of 100 m3 of air at 300 K. (a) Calculate the energy required to increase the temperature of this diatomic ideal gas by 1.00C. (b) What If? If all this energy could be used to lift an object of mass m through a height of 2.00 m, what is the value of m?arrow_forwardEqual masses of substance A at 10.0C and substance B at 90.0C are placed in a well-insulated container of negligible mass and allowed to come to equilibrium. If the equilibrium temperature is 75.0Q which substance has the larger specific heat? (a) substance A (b) substance B (c) The specific heats are identical. (d) The answer depends on the exact initial temperatures. (e) More information is required.arrow_forwardA certain ideal gas has a molar specific heat of Cv = 72R. A 2.00-mol sample of the gas always starts at pressure 1.00 105 Pa and temperature 300 K. For each of the following processes, determine (a) the final pressure, (b) the final volume, (c) the final temperature, (d) the change in internal energy of the gas, (e) the energy added to the gas by heat, and (f) the work done on the gas. (i) The gas is heated at constant pressure to 400 K. (ii) The gas is heated at constant volume to 400 K. (iii) The gas is compressed at constant temperature to 1.20 105 Pa. (iv) The gas is compressed adiabatically to 1.20 105 Pa.arrow_forward
- Pioneers stored fruits and vegetables in underground cellars. In winter, why did the pioneers place an open barrel of water alongside their produce?arrow_forwardEthyl alcohol has about one-half the specific heat of water. Assume equal amounts of energy are transferred by heat into equal-mass liquid samples of alcohol and water in separate insulated containers. The water rises in temperature by 25C. How much will the alcohol rise in temperature? (a) It will rise by 12C. (b) It will rise by 25C. (c) It will rise by 50C. (d) It depends on the rate of energy transfer, (e) It will not rise in temperature.arrow_forwardA sample of a diatomic ideal gas has pressure P and volume V. When the gas is warmed, its pressure triples and its volume doubles. This warming process includes two steps, the first at constant pressure and the second at constant volume. Determine the amount of energy transferred to the gas by heat.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
The Second Law of Thermodynamics: Heat Flow, Entropy, and Microstates; Author: Professor Dave Explains;https://www.youtube.com/watch?v=MrwW4w2nAMc;License: Standard YouTube License, CC-BY