
College Physics
2nd Edition
ISBN: 9780134601823
Author: ETKINA, Eugenia, Planinšič, G. (gorazd), Van Heuvelen, Alan
Publisher: Pearson,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 67GP
* Suppose that Earth rotated much faster on its axis—so fast that people were almost weightless when at Earth’s surface. How long would the length of a day be on this new Earth?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Which of the following is part of the interior of the Sun?
photosphere
the corona
sunspots
radiation zone
Most craters on the surface of the Moon are believed to be caused by which of the following?
faults
asteroids
volcanoes
meteoroids
An object is subjected to a friction force with magnitude 5.49 N, which acts against the object's velocity. What is the work (in J) needed to move the object at constant speed for the following routes?
y (m)
C
B
(5.00, 5.00)
A
x (m)
©
(a) the purple path O to A followed by a return purple path to O
]
(b) the purple path O to C followed by a return blue path to O
]
(c) the blue path O to C followed by a return blue path to O
]
(d) Each of your three answers should be nonzero. What is the significance of this observation?
○ The force of friction is a conservative force.
○ The force of friction is a nonconservative force.
Chapter 5 Solutions
College Physics
Ch. 5 - Review Question 5.1 How do we know that the sum of...Ch. 5 - Review Question 5.2 Why is it true that when an...Ch. 5 - Review Question 5.3 Show that the two expressions...Ch. 5 - Review Question 5.4 Think back to Example 5.5 ...Ch. 5 - Review Question 5.5 A friend says he has heard...Ch. 5 - Which of the objects below is accelerating? Object...Ch. 5 - The circle in Figure Q5.2 represents the path...Ch. 5 - One of your classmates drew a force diagram for a...Ch. 5 - Why is it difficult for a high-speed car to...Ch. 5 - How does a person standing on the ground explain...
Ch. 5 - 6. A pilot performs a vertical loop-the-loop at...Ch. 5 - 7. Why is the following an inaccurate statement...Ch. 5 - 8 Two point-like objects P and Q are undergoing...Ch. 5 - Compare the magnitude of the normal force of a car...Ch. 5 - If you put a penny on the center of a rotating...Ch. 5 - Where on Earths surface would you expect to...Ch. 5 - 12. What observational data might Newton have used...Ch. 5 - What observations combined with his second and...Ch. 5 - What would happen to the force exerted by the Sun...Ch. 5 - James fixes a camera on a tripod and takes several...Ch. 5 - Your friend says that an object weighs less on...Ch. 5 - Your friend says that when an object is moving in...Ch. 5 - Describe three everyday phenomena that are...Ch. 5 - 19. Two identical cars are moving with equal...Ch. 5 - 20. Astronauts on the space station orbiting Earth...Ch. 5 - 21. In the movies you often see space stations...Ch. 5 - 22. Give one example of a situation in which an...Ch. 5 - Name a planet on which you would weigh less than...Ch. 5 - A motorized cart is moving at a constant speed...Ch. 5 - 1. Mountain biker While mountain biking, you first...Ch. 5 - * You swing a rock tied to a string in a vertical...Ch. 5 - * Loop-the-loop You ride a roller coaster with a...Ch. 5 - 4. You start an old record player and notice a bug...Ch. 5 - 5. Determine the acceleration of Earth due to its...Ch. 5 - The Moon is an average distance of 3.8108 m from...Ch. 5 - Aborted plane landing You are on an airplane that...Ch. 5 - BIO Ultracentrifuge You are working in a biology...Ch. 5 - 9. * EST A tire-pressure monitoring system warns...Ch. 5 - Imagine that you are standing on a horizontal...Ch. 5 - 11. * Rolling is a combination of linear and...Ch. 5 - 14. * Consider the scenario described in Problem...Ch. 5 - 15. * You want to determine the radial...Ch. 5 - 16. Ferris wheel You are sitting on a rotating...Ch. 5 - 17. * EST Estimate the radial acceleration of the...Ch. 5 - * EST Estimate the radial acceleration of the toe...Ch. 5 - 19. * Is it safe to drive your 1600-kg car at...Ch. 5 - 20. * You are fixing a broken rotary lawn mower....Ch. 5 - * Your car speeds around the 80-m-radius curved...Ch. 5 - How fast do you need to swing a 200-g ball at the...Ch. 5 - 23. ** A small ball is attached by a string to a...Ch. 5 - A coin rests on a record 0.15 m from its center....Ch. 5 - 25. * Roller coaster ride A roller coaster car...Ch. 5 - * A person sitting in a chair (combined mass 80...Ch. 5 - 27. * A car moves around a 50-m-radius highway...Ch. 5 - 28. * A 20.0-g ball is attached to a 120-cm-long...Ch. 5 - 29. A 50-kg ice skater goes around a circle of...Ch. 5 - * A car traveling at 10 m/s passes over a hill on...Ch. 5 - 31. A 1000-kg car is moving at 30 m/s around a...Ch. 5 - * Equation Jeopardy 1 Describe using words, a...Ch. 5 - ** Banked curve raceway design You need to design...Ch. 5 - * A circular track is in a horizontal plane, has a...Ch. 5 - 36. ** Design a quantitative test for Newton’s...Ch. 5 - 37. * Your friend says that the force that the Sun...Ch. 5 - Determine the gravitational force that (a) the Sun...Ch. 5 - 39. * (a) What is the ratio of the gravitational...Ch. 5 - 40. ** EST Estimate (a) the average distance...Ch. 5 - 41. * EST The average radius of Earth s orbit...Ch. 5 - * The Moon travels in a 3.8105-km-radius orbit...Ch. 5 - 43. * Determine the ratio of Earth’s gravitational...Ch. 5 - 44. * Determine the magnitude of the gravitational...Ch. 5 - 45. * When you stand on a bathroom scale here on...Ch. 5 - 46. The free-fall acceleration on the surface of...Ch. 5 - 47.* A satellite moves in a circular orbit a...Ch. 5 - 48. * Mars has a mass of kg and a radius of m....Ch. 5 - 49. * Determine the speed a projectile must reach...Ch. 5 - 50. ** Determine the distance above Earth’s...Ch. 5 - 51. *Determine the period of an Earth satellite...Ch. 5 - 52. * A spaceship in outer space has a doughnut...Ch. 5 - 53. * Using the velocity change method from...Ch. 5 - 54. * Loop-the-loop You have to design a...Ch. 5 - ** A Tarzan swing Tarzan (mass 80 kg) swings at...Ch. 5 - 56. * (a) If the masses of Earth and the Moon were...Ch. 5 - 57. * EST Estimate the radial acceleration of the...Ch. 5 - 58. ** EST Estimate the force exerted by the tire...Ch. 5 - 59. ** EST Estimate the maximum radial force that...Ch. 5 - 60. * EST Estimate the force exerted by the wheel...Ch. 5 - Lucia's bathroom scale on the equator reads 110 lb...Ch. 5 - ** Demolition An old building is being demolished...Ch. 5 - 65. Designing a banked roadway You need to design...Ch. 5 - * Evaluation question You find the following in a...Ch. 5 - 67. * Suppose that Earth rotated much faster on...Ch. 5 - 68. * On Earth, an average person’s vertical jump...Ch. 5 - 69. * You read in a science magazine that on the...Ch. 5 - 70. * Determining the forces between powders and...Ch. 5 - ** Isabel notices that if she places a small...Ch. 5 - Texas Motor Speedway On October 28, 2000 Gil de...Ch. 5 - Texas Motor Speedway On October 28, 2000 Gil de...Ch. 5 - Texas Motor Speedway On October 28, 2000 Gil de...Ch. 5 - Texas Motor Speedway On October 28, 2000 Gil de...Ch. 5 - Texas Motor Speedway On October 28, 2000 Gil de...Ch. 5 - Halley's Comet Edmond Halley was the first to...Ch. 5 - Halley's Comet Edmond Halley was the first to...Ch. 5 - Halley's Comet Edmond Halley was the first to...Ch. 5 - Halley's Comet Edmond Halley was the first to...Ch. 5 - Halley's Comet Edmond Halley was the first to...Ch. 5 - Halley's Comet Edmond Halley was the first to...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
1. Which is a function of the skeletal system? (a) support, (b) hematopoietic site, (c) storage, (d) providing ...
Anatomy & Physiology (6th Edition)
1.3 Obtain a bottle of multivitamins and read the list of ingredients. What are four chemicals from the list?
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
a. How can aspirin be synthesized from benzene? b. Ibuprofen is the active ingredient in pain relievers such as...
Organic Chemistry (8th Edition)
Considering the second law of thermodynamics, would you cxpect the typical biomass of primary producers in an e...
Campbell Biology (11th Edition)
Based on your answers to Questions 2 and 3, which part of the Atlantic basin appears to have opened first?
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of mass m = 2.50 kg is pushed d = 2.30 m along a frictionless horizontal table by a constant applied force of magnitude F = 10.0 N directed at an angle 25.0° below the horizontal as shown in the figure below. m (a) Determine the work done by the applied force. ] (b) Determine the work done by the normal force exerted by the table. ] (c) Determine the work done by the force of gravity. ] (d) Determine the work done by the net force on the block. ]arrow_forwardA man pushing a crate of mass m = 92.0 kg at a speed of v = 0.845 m/s encounters a rough horizontal surface of length = 0.65 m as in the figure below. If the coefficient of kinetic friction between the crate and rough surface is 0.357 and he exerts a constant horizontal force of 294 N on the crate. e (a) Find the magnitude and direction of the net force on the crate while it is on the rough surface. magnitude direction ---Select--- N (b) Find the net work done on the crate while it is on the rough surface. ] (c) Find the speed of the crate when it reaches the end of the rough surface. m/sarrow_forwardTwo blocks, A and B (with mass 45 kg and 120 kg, respectively), are connected by a string, as shown in the figure below. The pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the incline is μk = 0.26. Determine the change in the kinetic energy of block A as it moves from to, a distance of 15 m up the incline (and block B drops downward a distance of 15 m) if the system starts from rest. × J 37° Barrow_forward
- You are working for the Highway Department. In mountainous regions, highways sometimes include a runaway truck ramp, and you are asked to help with the design of such a ramp. A runaway truck ramp is often a lane of gravel adjacent to a long downhill section of roadway where trucks with failing brakes may need assistance to stop. Working with your supervisor, you develop a worst-case scenario: a truck with a mass of 6.00 × 104 kg enters a runaway truck lane traveling at 34.1 m/s. Assume that the maximum constant value for safe acceleration of the truck is -5.00 m/s². Any higher magnitude of acceleration increases the likelihood that semi-trailer rigs could jackknife. Your supervisor asks you to advise her on the required length (in m) of a runaway truck lane on a flat section of ground next to the roadway. marrow_forwardA large cruise ship of mass 6.20 × 107 kg has a speed of 10.2 m/s at some instant. (a) What is the ship's kinetic energy at this time? ] (b) How much work is required to stop it? (Give the work done on the ship. Include the sign of the value in your answer.) ] (c) What is the magnitude of the constant force required to stop it as it undergoes a displacement of 3.10 km? Narrow_forwardA 7.80 g bullet is initially moving at 660 m/s just before it penetrates a block of wood to a depth of 6.20 cm. (a) What is the magnitude of the average frictional force (in N) that is exerted on the bullet while it is moving through the block of wood? Use work and energy considerations to obtain your answer. N (b) Assuming the frictional force is constant, how much time (in s) elapses between the moment the bullet enters the block of wood and the moment it stops moving? Sarrow_forward
- Please don't use Chatgpt will upvote and give handwritten solutionarrow_forwardTwo blocks, A and B (with mass 45 kg and 120 kg, respectively), are connected by a string, as shown in the figure below. The pulley is frictionless and of negligible mass. The coefficient of kinetic friction between block A and the incline is μk = 0.26. Determine the change in the kinetic energy of block A as it moves from to ①, a distance of 15 m up the incline (and block B drops downward a distance of 15 m) if the system starts from rest. ] 37° A © Barrow_forwardA skateboarder with his board can be modeled as a particle of mass 80.0 kg, located at his center of mass. As shown in the figure below, the skateboarder starts from rest in a crouching position at one lip of a half-pipe (point). On his descent, the skateboarder moves without friction so that his center of mass moves through one quarter of a circle of radius 6.20 m. i (a) Find his speed at the bottom of the half-pipe (point Ⓡ). m/s (b) Immediately after passing point Ⓑ, he stands up and raises his arms, lifting his center of mass and essentially "pumping" energy into the system. Next, the skateboarder glides upward with his center of mass moving in a quarter circle of radius 5.71 m, reaching point D. As he passes through point ①, the speed of the skateboarder is 5.37 m/s. How much chemical potential energy in the body of the skateboarder was converted to mechanical energy when he stood up at point Ⓑ? ] (c) How high above point ① does he rise? marrow_forward
- A 31.0-kg child on a 3.00-m-long swing is released from rest when the ropes of the swing make an angle of 29.0° with the vertical. (a) Neglecting friction, find the child's speed at the lowest position. m/s (b) If the actual speed of the child at the lowest position is 2.40 m/s, what is the mechanical energy lost due to friction? ]arrow_forwardA force acting on a particle moving in the xy plane is given by F = (2yî + x²), where F is in newtons and x and y are in meters. The particle moves from the origin to a final position having coordinates x = 5.60 m and y = 5.60 m, as shown in the figure below. y (m) B (x, y) x (m) (a) Calculate the work done by F on the particle as it moves along the purple path (0 Ⓐ©). ] (b) Calculate the work done by ♬ on the particle as it moves along the red path (0 BC). J (c) Is F conservative or nonconservative? ○ conservative nonconservativearrow_forwardA 3.5-kg block is pushed 2.9 m up a vertical wall with constant speed by a constant force of magnitude F applied at an angle of 0 = 30° with the horizontal, as shown in the figure below. If the coefficient of kinetic friction between block and wall is 0.30, determine the following. (a) the work done by F J (b) the work done by the force of gravity ] (c) the work done by the normal force between block and wall J (d) By how much does the gravitational potential energy increase during the block's motion? ]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY