
(a) Show that the volume of a segment of height h of a sphere of radius r is
(See the figure.)
(b) Show that if a sphere of radius 1 is sliced by a plane at a distance x from the center in such a way that the volume of one segment is twice the volume of the other, then x is a solution of the equation
3x3 – 9x + 2 = 0
where 0 < x < 1. Use Newton’s method to find x accurate to four decimal places.
(c) Using the formula for the volume of a segment of a sphere, it can he shown that the depth x to which a floating sphere of radius r sinks in water is a root of the equation
where s is the specific gravity of the sphere. Suppose a wooden sphere of radius 0.5 m has specific gravity 0.75. Calculate, to four-decimal-place accuracy, the depth to which the sphere will sink.
(d) A hemispherical bowl has radius 5 inches and water is running into the bowl at the rate of 0.2 in3/s.
(i) How fast is the water level in the bowl rising at the instant the water is 3 inches deep?
(ii) At a certain instant, the water is 4 inches deep. How long will it take to fill the bowl?

Trending nowThis is a popular solution!

Chapter 5 Solutions
Student Solutions Manual, Chapters 1-11 for Stewart's Single Variable Calculus, 8th (James Stewart Calculus)
- Number 4 plsarrow_forwardGood Day, Would appreciate any assistance with this query. Regards,arrow_forwardThis question builds on an earlier problem. The randomized numbers may have changed, but have your work for the previous problem available to help with this one. A 4-centimeter rod is attached at one end to a point A rotating counterclockwise on a wheel of radius 2 cm. The other end B is free to move back and forth along a horizontal bar that goes through the center of the wheel. At time t=0 the rod is situated as in the diagram at the left below. The wheel rotates counterclockwise at 1.5 rev/sec. At some point, the rod will be tangent to the circle as shown in the third picture. A B A B at some instant, the piston will be tangent to the circle (a) Express the x and y coordinates of point A as functions of t: x= 2 cos(3πt) and y= 2 sin(3t) (b) Write a formula for the slope of the tangent line to the circle at the point A at time t seconds: -cot(3πt) sin(3лt) (c) Express the x-coordinate of the right end of the rod at point B as a function of t: 2 cos(3πt) +411- 4 -2 sin (3лt) (d)…arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage